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Abstract. Genome analysis is a major precondition for future advances
in the life sciences. The complex organization of genome data and the
interactions between genomic components can often be modeled and vi-
sualized in graph structures. In this paper we propose the integration
of several data sets into a graph database. We study the aptness of the
database system in terms of analysis and visualization of a genome regu-
latory network (GRN) by running a benchmark on it. Major advantages
of using a database system are the modifiability of the data set, the im-
mediate visualization of query results as well as built-in indexing and
caching features.

1 Introduction

Genome analysis is a specific use case in the life sciences that has to handle
large amounts of data that expose complex relationships. The size and number
of genome data sets is increasing at a rapid pace [35]. Visualization of large scale
data sets for exploration of various biological processes is essential to understand,
e.g., the complex interplay between (bio-)chemical components or the molecular
basis of relations among genes and transcription factors in regulatory networks
[23]. Therefore, visualizing biological data is increasingly becoming a vital factor
in the life sciences. On the one hand, it facilitates the explanation of the potential
biological functions of processes in a cell-type, or the discovery of patterns as
well as trends in the datasets [25]. On the other hand, visualization approaches



can help researchers to generate new hypotheses to extend their knowledge based
on current informative experimental datasets and support the identification of
new targets for future work [21].

Over the last decade, large efforts have been put into the visualization of
biological data. For this purpose, several groups have published studies on a va-
riety of methods and tools for e.g., statistical analysis, good layout algorithms,
searching of clusters as well as data integration with well-known public reposito-
ries [1,3,8,15,18,27,28,32] (for details see review [14]). Recently, by reviewing
146 state-of-the-art visualization techniques Kerren et al. [13] have published
a comprehensive interactive online visualization tool, namely BioVis Explorer,
which highlights for each technique the data specific type and its characteristic
analysis function within systems biology.

A fundamental research aspect of systems biology is the inference of gene reg-
ulatory networks (GRN) from experimental data to discover dynamics of disease
mechanisms and to understand complex genetic programs [26]. For this aim, var-
ious tools (e.g., GENeVis[3], FastMEDUSA [4], SynTReN [5], STARNET2 [10],
ARACNe [19], GeneNetWeaver [27], Cytoscape [28], NetBioV [31], LegumeGRN
[32]) for the reconstruction and visualization of GRNs have been developed over
the past years and those tools are widely used by system and computational
biologists. A comprehensive review about (dis-)advantages of these tools can be
found in [14]. Kharumnuid et al. [14] have also discussed in their review that the
large majority of these tools are implemented in Java and only a few of them have
been written using PHP, R, PERL, Matlab or C++, indicating that the analysis
of GRNs with those tools, in most cases, needs a two-stage process: In the first
stage, experimental or publicly available data from databases such as FANTOM
[17], Expression Atlas [24], RNA Seq Atlas [16], or The Cancer Genome Atlas
(https://www.cancer.gov/), have to be prepared; in the second stage, network
analysis and visualization with GRN tools can be performed. This second stage
possibly involves different tools for analysis and for visualization. This requires
both time and detailed knowledge of tools and databases.

To overcome this limitation of existing tools as well as to simplify the con-
struction of GRNs, we propose in this study the usage of an integrated tool,
namely Neo4J, that offers both analysis as well as visualization functionality.
Neo4J which is implemented in Java is a very fast, scalable graph database
platform which is particularly devised for the revelation of hidden interactions
within highly connected data, like complex interplay within biological systems.
Further, Neo4J provides the possibility to construct dynamic GRNs that can be
constructed and modified at runtime by insertion or deletion of nodes/edges in
a stepwise progression. We demonstrate in this study that the usage of a graph
database could be favourable for analysis and visualization of biological data.
Especially, focusing on the construction of GRNs, it has the following advan-
tages:

— No two-stage process consisting of a data preparation phase and a subsequent
analysis and visualization phase



— Built-in disk-memory communication to load only the data relevant for pro-
cessing into main memory

— Reliability of the database system with respect to long-term storage of the
data (as opposed to the management of CSV files in a file system)

— Advanced indexing and caching support by the database system to speed up
data processing

— Immediate visualization of analysis results even under modifications of the
data set

The article is organized as follows. Section 2 provides the necessary back-
ground on genome regulatory networks and the selection of data sets that we
integrated in our study. Section 3 introduces the notion of graphs and properties
of the applied graph database. Section 4 reports on the experiments with several
workload queries that are applied for enhancer-promoter Interaction. Section 5
concludes this article with a discussion.

2 Data Integration

To demonstrate the usability of the Neo4J graph database for analysis and vi-
sualization of biological data in the field of life sciences, we construct GRNs
based on known enhancer-promoter interactions (EPIs) and their shared regu-
latory processes by focusing on cooperative transcription factors (TFs). For this
purpose, we first obtained biological data from different sources (FANTOM [17],
UCSC genome browser [11] and PC-TraFF analysis server [21]) and then per-
formed a mapping-based data integration process based on the following phases:

Phase 1: The information about pre-defined enhancer-promoter interactions
(EPI) is obtained from the FANTOM database. FANTOM is the international
research consortium for “Functional Annotation of the Mammalian Genome”
that stores sets of biological data for mammalian primary cell types according
to their active transcripts, transcription factors, promoters and enhancers. Us-
ing the Human Transcribed Enhancer Atlas in this database, we collected our
benchmark data.

Phase 2: Using the UCSC genome browser, which stores a large collection
of genome assemblies and annotation data, we obtained for each enhancer and
promoter region (defined in Phase 1) the corresponding DNA sequences individ-
ually. It is important to note that while the sequences of enhancers are directly
extracted based on their pre-defined regions, we used the annotated transcrip-
tion start sites (TSS) of genes for the determination of promoter regions and
extraction of their corresponding sequences (—300 base pairs to +100 base pairs
relative to the TSS).

Phase 3: Applying the PC-TraFF analysis server to the sequences from Phase
2, we identified for each sequence a list of significant cooperative TF pairs. The
PC-TraFF analysis server also provides for each TF cooperations:



— a significance score (z-score), which presents the strength of cooperation

— an annotation about the cooperativity of TFs—more precisely whether their
physical interaction was experimentally confirmed or not. The information
about their experimental validation has been obtained from TransCompel
(release 2014.2) [12] and the BioGRID interaction database [6].

The data integration process for the combination of data from different
sources is necessary to construct highly informative GRNs, which include com-
plex interactions between the components of biological systems. One of the key
players of these systems are the TFs which often have to form cooperative dimers
in higher organisms for the effective regulation of gene expression and orches-
tration of distinct regulatory programs such as cell cycle, development or speci-
ficity [21,29, 33]. The binding of TFs occurs in a specific combination within
enhancer- and promoter regions and plays an important role in the mediation
of chromatin looping, which enables enhancer-promoter interactions despite the
long distances between them [2, 20, 22]. Today, it is well known that enhancers
and promoters interact with each other in a highly selective manner through
long-distance chromatin interactions to ensure coordinated cellular processes as
well as cell type-specific gene expression [2, 20, 22]. However, it is still challeng-
ing for life scientists to understand how enhancers precisely select their target
promoter(s) and which TFs facilitate such selection processes as well as inter-
actions. To highlight such complex interactions between the elements of GRNs
in a stepwise progression, Neo4J provides very effective graph database based
solutions for the biological research community.

3 The Graph Database Neo4J

For datasets that lack a clear tabular structure and are of large size, data man-
agement in NoSQL databases might be more appropriate than mapping these
datasets to a relational tabular format and managing them in a SQL database.
Several non-relational data models and NoSQL databases—including graph data
management—are surveyed in [34]. Graphs are a very versatile data model when
links between entities are important. In this sense, a graph structure is also the
most natural representation of a GRN.

Mathematically, a directed graph consists of a set V' of nodes (or vertices)
and a set F of edges. For any two nodes v; and vy, a directed edge between
these nodes is written as (v, v2) where v is the source node and vy is the target
node. Graph databases often apply the so-called property graph data model. The
property graph data model extends the notion of a directed graph by allowing
key-value pairs (called “properties”) to store information in the nodes and along
the edges. Graph databases have been applied to several biomedical use cases in
other studies: Previous versions of Neo4J have been used in a benchmark with
just three queries by Have and Jensen [9] while Fiannaca et al. [7] present their
BioGraphDB integration platform which is based on the OrientDB framework.

NeodJ (https://neodj.com/) is one of the most widely used open source
graph databases and has a profound community support. In Neo4J each edge



has a unique type (denoting the semantics of the edge relationship between the
two attached nodes); each node can have one or more labels (denoting the type
or types of the node in the data model). Neo4J offers a SQL-like query language
called Cypher. Cypher provides “declarative” syntax that is easy to read. It has
an ASCII art syntax visually representing nodes and relationships in the graph
structure. Thus, the query pattern for “Find all the genes g to which at least
one TFPair ¢ binds” is MATCH (g:Gene)<-[:binds]-(t:TFPair) RETURN g,t.
Here, Gene and TFPair are the two types for nodes and the query identifies the
relationships labeled binds connecting any nodes of type Gene and TFPair. The
resulting nodes and their relationships are immediately visualized in the Neo4J
browser. A snippet of the result visualization is shown in Figure 1.
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Fig. 1. A snippet of the result visualization of the sample query

Neo4j employs various caching mechanisms; as a result, once the query has
been executed the following executions will use the nodes/relationships cache.
The Neo4J page cache maintains data blocks in RAM for faster traversal by
avoiding disk access. Moreover, the query plan cache helps reducing the com-
puting time for parametrized queries that have already been executed before.

4 Benchmark

The benchmark was executed on a Linux PC running Ubuntu 16.04 LTS with
the following specifications: an Intel CPU with 3.40 GHz and eight cores as well
as 15.6 GB RAM. For our benchmark, we used Neo4J 3.4.3 Enterprise. We tested
the analysis of our GRN data on a small data set and a larger data set.



4.1 Datasets

The input is provided as files in comma separated values (CSV) format. The files
representing the genes (corresponding to the promoters), enhancers and pairs of
transcription factors were parsed into Neo4j first. We generated three distinct
types of nodes (namely, Gene, Enhancer, and TFPair) from them. Each Gene
node has its genename as a property, while each Enhancer node contains a prop-
erty called enhancerID; each TFPair has several properties: pwm1, pwm?2 (which
denote the two cooperative transcription factors), the name (as a concatenation
of the two represented transcription factors), as well as KnownCompelPair and
KnownBioGridPair as properties (as described in Section 2, Phase 3).

Next, we created two types of relationships: EPI and binds. We extracted
the EPI relationship between an enhancer and a promoter (located upstream
of the specified gene); the EPI relationship represents the known interaction
between an enhancer and promoter (as described in Section 2, Phase 1). The
binds relationship links either a TFPair and an enhancer or a TFPair and a
promoter. The relationship binds represents the fact that the pair binds to the
promoter or enhancer in the order specified in the properties pwml and pwm?2.
Moreover, each binds relationship also has a property called zscore that denotes
the strength of the binding (as described in Section 2, Phase 3).

The size of the small dataset in CSV format was 97.6 kB containing 1422 lines
of text. The generated nodes included 11 genes, 619 TFPairs, and 15 enhancers;
there were 19 EPI relationships and 757 binds relationships. We also tested a
larger dataset of size 873 kB (with 16559 lines of text). There were 314 gene
nodes, 3983 TFPair nodes, and 132 enhancer nodes. Furthermore, the numbers
of relationships increased to 375 EPI relationships and 11747 binds relationships.

The datasets analyzed in this study and the cypher-commands used to load
and analyze them with Neo4J are available under [30].

4.2 Queries

For both benchmark datasets, small and large, the same queries were run. The
tests comprised two settings in order to consider the effects of the Neo4J cache:

— one test was conducted on cold boot and executed only once to avoid caching
of the dataset;

— the other test was conducted after warming up the cache; in order to test for
the real-world scenario, the queries have been run twenty times; then, their
average was calculated to find the representative execution time.

The execution time represents not only the query run time on the database
but includes the entire round-trip latency for visualizing the results and deseri-
alization (streaming) of the result objects. We used the following test cases:

— Bulk data insertion
e i1-3: Loading the CSV files (genes, enhancers, TFPairs)
e c1-3: Assigning a uniqueness constraints to nodes



e i4-6: Loading relationship data from CSV files (EPI and binds)
— Path queries

e Qla: For a given genename, find all enhancers interacting with that gene.

e Qlb: For a genename set, find all enhancers interacting with the genes.

e (Q2a: For a given genename, find all TFPairs bound to that gene.

e (Q2b: Restrict to the known TFPairs with AND operator.

e (Q2c: Restrict to the known TFPairs with AND and OR operator

e Q2d: Find the TFPairs of an enhancer that interact with a certain gene.

e (Q2e: Restrict to z-score larger than 4.

e (Q3a: For all genenames find all other genenames that are bound by at
least one common TFPair.

e (Q3b: For a specific gene find all other genenames that are bound by at
least one common TFPair.

e Q3c: For a specific enhancerID find all other enhancerIDs that are bound
by at least one common TFPair.

e QQ3d: For a specific enhancerID find genenames that are bound by at
least one common TFPair.

e Q4a: For a given enhancer ID (or a prefix of the ID), find all the TFPairs
bound to the enhancer.

e (Qba: For a given enhancerID, find all genes interacting with the enhancer.

e Qba: For a given genename, find all TFPairs bound to the gene.

e (Q6b: For a given genename, find all TFPairs bound to the gene restrict-
ing to those bindings with a high zscore.

e Q7a: For a given TF find all TFPairs that contain the TF.

e Q7b: For a given TF find the names of the two transcription factors in
the TFPairs that contain the transcription factor.

— Statistical queries

e Gla: Count the total number of TFPairs that one enhancer has in com-
mon with any other.

e G1b: Count the TFPairs that two specific enhancers have in common.

4.3 Runtime Results

We analyzed the runtime results to assess the impact of dataset size and cache
warming on our sample queries. Bulk loading data from CSV files into Neo4J is
taking more time than performing any other queries as shown in Figure 2. The
increased amount of nodes in the larger benchmark (insertion steps il, i2 and i3)
did not impact the runtime substantially. In contrast, the increased amount of
relationships (insertion steps i4, i5 and i6) led to a significant runtime overhead.

The next executions that cover the cold-boot tests (without cache warming)
are depicted in Figure 3. In this case, the runtime for Q2b, Q3c, Q3d, and Q5a
was the same for both the small and large benchmark. Interestingly, the path
queries Qla, Q2a, Q2e Q6a, and Q6b, took on average 35% more execution time
for the small benchmark than for the large benchmark which demonstrates a
good off-the-shelf scalability of the graph database. Lastly, all the other queries
were taking more time to execute for the large benchmarks as opposed to the
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Fig. 2. Execution time for bulk data insertion steps

small one. This overhead can be explained by the fact that the returned amount
of result nodes and result relationships is significantly larger for the large bench-
mark. In particular, the unrestricted query Q3a (which does not provide selec-
tion conditions for the queried Genes and TFPairs) could not be executed for
the large dataset because the Neo4J browser crashed after 5 minutes.
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Fig. 3. Execution time of path queries on cold boot

After warming up the cache, the performance improved drastically: the exe-
cution time for processing queries decreased by about 64% on average for both
the small and the large benchmark after warming up the system as compared to
execution time for the cold boot case. Notably, for both datasets the execution
times are nearly similar for most of the queries, which demonstrates the positive
effect of cache warming. The unrestricted query Q3a remains the exceptional
case where the database is not able to finish the execution on the large data set.
For some queries, in particular Q3b, Q4a, Q7a and Q7b (taking more time to ex-
ecute in the large benchmark than in small benchmark) the impact of the larger
result sets in the large dataset remains noticeable even after cache warming.

Lastly, we tested the two COUNT queries Gla and G1b as sample queries
for statistical analysis of the data sets. Here we observed a significant over-
head for the larger benchmark: the first query—counting TFPairs only for each
enhancer—took roughly 12 times longer for the larger benchmark (22.4 ms) than
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Fig. 4. Execution of path queries after cache warming

for the small benchmark (1.9 ms); more notably, the second query—counting
TFPairs for each pair of enhancers—took roughly 19 times longer for the larger
benchmark (37.7 ms) than for the small benchmark (1.95 ms).

5 Conclusion

In this paper we demonstrated that several advantages can be achieved for our
use case of GRN analysis by loading our data into the Neo4J graph database and
expressing our analysis queries in the human-readable query language Cypher.
We presented our approach for integration of biological data from different
sources. We proved scalability of query execution in the graph database by bench-
marking the Neo4J graph database on a query workload using a small and a large
data set and investigating the effect of cache warming on the performance.

The growing importance of visualization techniques is reflected in the still
growing number of corresponding publications that are registered in the Pubmed
database. In 2017 the proportion of visualization related articles has increased by
a factor of 17 with respect to the average from the period of 1945 to 1974. This
demonstrates the drastically increasing importance of visualization techniques
“in the life sciences”. Up until just a few years ago publications involving the
keyword visualization were typically dealing with topics related to imaging tech-
niques in the medical sciences. Only from the year 2012 on, a substantial number
of publications that deal with visualization of big data has been published.

Making big data sets accessible to interpretation is one of the main challenges
in Life science now and in the next years. Graph databases (in particular Neo4J)
can be a powerful tool to aid researchers with the storage, the integration as well
the analysis and visualization of biological, medical and healthcare data.
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