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Abstract. The extraction of codes from Electronic Health Records (EHR) data 

is an important task because extracted codes can be used for different purposes 

such as billing and reimbursement, quality control, epidemiological studies, and 

cohort identification for clinical trials. The codes are based on standardized vo-

cabularies. Diagnostics, for example, are frequently coded using the Interna-

tional Classification of Diseases (ICD), which is a taxonomy of diagnosis codes 

organized in a hierarchical structure. Extracting codes from free-text medical 

notes in EHR such as the discharge summary requires the review of patient data 

searching for information that can be coded in a standardized manner. The 

manual human coding assignment is a complex and time-consuming process. 

The use of machine learning and natural language processing approaches have 

been receiving an increasing attention to automate the process of ICD coding. 

In this article, we investigate the use of Support Vector Machines (SVM) and 

the binary relevance method for multi-label classification in the task of auto-

matic ICD coding from free-text discharge summaries. In particular, we ex-

plored the role of SVM parameters optimization and class weighting for ad-

dressing imbalanced class. Experiments conducted with the Medical Infor-

mation Mart for Intensive Care III (MIMIC III) database reached 49.86% of f1-

macro for the 100 most frequent diagnostics. Our findings indicated that opti-

mization of SVM parameters and the use of class weighting can improve the ef-

fectiveness of the classifier.  

Keywords: Automated ICD Coding, Multi-label Classification, Imbalanced 

Classes. 

1 Introduction 

The Electronic Health Records (EHRs) are becoming widely adopted in the healthcare 

industry [1]. EHR is a software solution used to register health information about 

patients, as well as to manage health organizations activities for medical billing and 

even population health management. The data entered in the EHR usually contain 

both structured data (patient demographics, laboratory results, vital signs, etc.) and 

unstructured data (free-text notes).  
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Most of the records in an EHR are textual documents such as progress notes and 

discharge summaries entered by health professionals who attended the patient. Dis-

charge summary is a free-text document that is recorded in the moment of patient 

discharge. It describes the main health information about a patient during his/her visit 

to a hospital and provides final diagnosis, main exams, medication, treatments, etc.. 

These unstructured data inserted as free text have the advantage of giving greater 

autonomy to health professionals for registering clinical information, but it entails 

issues for automatic data analysis [2]. 

In this scenario, extracting codes from EHR based on terminologies and standard 

medical classifications is an important task because the codes can be used for differ-

ent purposes such as billing and reimbursement, quality control, epidemiological stud-

ies, and cohort identification for clinical trials [3]. Diagnosis coding, for example, is 

used not only for reporting and reimbursement purposes (in US, for example), but for 

research applications such as tracking patients with sepsis [4]. 

Usually, several EHR records are encoded in a standardized way by terminologies 

such as the International Classification of Diseases (ICD)1 which is a taxonomy of 

diagnostic codes organized in a hierarchical structure. ICD codes are organized in a 

rooted tree structure, with edges representing is-a relationships between parents and 

children codes. More specifically, the ICD-9 contains more than 14 thousand classifi-

cation codes for diseases. Codes contain three to five digits, where the first three dig-

its represent disease category and the remaining digits represent subdivisions. For 

example, the disease category “essential hypertension” has the code 401, while its 

subdivisions are 401.0 - Malignant essential hypertension, 401.1 - Benign essential 

hypertension, and 401.9 - Unspecified essential hypertension. 

Extracting codes from EHR textual documents requires the review of patient data 

searching for information that can be coded in a standardized manner. For example, 

evaluate discharge summary to assign ICD codes. Trained professional coders review 

the information in the patient discharge summary and manually assign a set of ICD 

codes according to the patient conditions described in the document [5]. However, 

assigning diagnosis codes performed by human coders is a complex and time-

consuming process. In practical settings, there are many patients and the insertion of 

data and coding process require software support to be further effective. 

Several proposals have been conducted to attempt automating the ICD coding pro-

cess (e.g., [3][6][10]). A study conducted by Dougherty et al. showed that an ICD 

coding process assisted by an auto-coding improved coder productivity by over 20% 

on inpatient documentation [11]. Therefore, an automated system can help medical 

coders in the task of ICD coding and, consequently, reduce costs. However, this task 

has been shown to be a very challenging problem, especially because of the large 

number of ICD codes and the complexity of medical free-text [12]. 

According to our literature review, several research challenges remain opened in 

this direction. Medical free-text is difficult to be handled by machine learning ap-

proaches because misspellings and not unstandardized abbreviations often compro-

mise their quality [13]. Besides, automated ICD coding is characterized to present 
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aspects that negatively affect effectiveness such as large labels set, class imbalance, 

inter-class correlations, and large feature sets [10]. Despite these challenges, machine 

learning approaches for automated coding are very promising because the model is 

automatically created from training data, without the need of human intervention. 

In this paper, we aim to construct a model based on machine learning approaches 

for automatic ICD coding from free-text discharge summaries. In particular, we inves-

tigate the role of SVM parameters optimization and class weighting for imbalanced 

class addressing. In a machine learning perspective, a free-text sample could be con-

sidered as an instance in which one or more ICD codes can be assigned. It means that 

ICD codes (labels) are not exclusive and, therefore, a discharge summary can be la-

beled as belonging to multiple disease classes. That scenario is known as a multi-label 

classification task. In this work, we address multi-label classification problems into 

several multi-class, where each sample belongs to a single class. The results presented 

in our experimental study have shown that considering parameter values searching 

and the use of class weighting can bring improvements to the automatic coding task. 

This article is organized as follows: Section 2 presents the related work. Section 3 

introduces our experimental design. Then, Section 4 reports on our obtained results 

and discusses the findings. Section 5 presents the final considerations. 

 

2 Related Work 

Two approaches are usually explored in automated coding task of medical text: (i) 

Information Retrieval (IR) of codes from a dictionary; and (ii) machine learning or 

rule-based Text Classification (TC). In the first approach, an IR system is used to 

allow professional coders to search for a set of one or more terms in a dictionary [14]. 

TC approaches have been receiving an increasing attention in the task of medical text 

coding.  

Several studies have proposed models for ICD coding and their methods ranged 

from manual rules to online learning. The best results for classification accuracy have 

been achieved by rules-based systems [15] in which hand-crafted expert rules are 

created. Nevertheless, these methods may be very time-consuming due to the necessi-

ty of creating hand-craft expert rules for all ICD codes. 

Machine learning approaches are very promising because the model is automatical-

ly created from training data, without the need of human intervention. A literature 

review conducted by Stanfill et al. [16] concluded that most of studies presenting 

reliable results are inserted in controlled settings, often using normalized data and 

keeping a limited scope. For example, Zhang et al. [17] used SVMs and achieved a F1 

score of 86.6%. However, they used only radiology reports with limited ICD-9 codes. 

Perotte et al. [5] proposed the use of a hierarchy-based Support Vector Machines 

(SVM) model in the task of automated diagnosis code classification. The tests were 

conducted over the Medical Information Mart for Intensive Care (MIMIC II) dataset. 

The authors considered two different approaches for predicting ICD-9 codes: Flat 

SVM and hierarchy-based SVM. The flat SVM treated each ICD-9 code independent-
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ly of each other whereas hierarchy-based SVM leveraged the hierarchical nature of 

ICD-9 codes into its modeling. The best results achieved a F1 score of 39.5% with the 

hierarchy-based SVM.  

Several theoretical studies on multi-label classification have indicated that effec-

tively exploiting correlations between labels can benefit the multi-label classification 

effectiveness [13]. Subotin et al. [18] proposed a method in which a previous model is 

trained to estimate the conditional probability of one code being assigned to a docu-

ment, given that it is known that another code has been assigned to the same docu-

ment. After, an algorithm applies this model to the output of an existing statistical 

auto-coder to modify the confidence scores of the codes. They tested their model for 

ICD-10 procedure codes. 

Kavuluro et al. [10] conducted experiments to evaluate supervised learning ap-

proaches to automatically assign ICD-9 codes in three different datasets. They used 

different problem transformation approaches with different feature selection, training 

data selection, classifier chaining, and label calibration approaches. For the larger 

dataset, they achieved F1-score of 0.57 for codes with at least 2% of representation 

(diagnostics that were present in at least 2% of the records). Over all codes (1231 

codes), they obtained a F1-score of 0.47, even with 80% of these codes having less 

than 0.5% of representation. They concluded that datasets with different characteris-

tics and different scale (size of the texts, number of distinct codes, etc.) warrant dif-

ferent learning approaches. 

Scheurwegs et al. explored a distributional semantic model using word2vec skip-

gram model to generalize over concepts and retrieve relations between them. Their 

approach automatically searched concepts on Unified Medical Language System 

(UMLS) Metathesaurus2, an integration of biomedical terminologies, using the Met-

aMap3 tool to extract named entities and semantic predications from free text. The 

datasets they used are in Dutch and are derived from the clinical data warehouse at the 

Antwerp University Hospital. They concluded that concepts derived from raw clinical 

texts outperform a bag-of-words approach for ICD coding. 

Berndorfer and Henriksson [19] explored various text representations and classifi-

cation models for assigning ICD-9 codes to discharge summaries in Medical Infor-

mation Mart for Intensive Care III (MIMIC III)4 database. For text representation, 

they compared two approaches: shallow and deep. The shallow representation de-

scribes each document as a bag-of-words using Term Frequency - Inverse Document 

Frequency (TF-IDF), while the deep representation describes the documents as a TF-

IDF-weighted sum of semantic vectors that were learned using Word2Vec. The au-

thor still tested a combination strategy, in which features from the two representations 

are concatenated. For classification models, Berndorfer and Henriksson explored the 

Flat SVM and hierarchical SVM. They concluded that the best results, with F1-score 

of 39.25%, was obtained by combining models built using different representations. 

                                                           
2  https://www.nlm.nih.gov/research/umls/about_umls.html  
3  https://metamap.nlm.nih.gov/ 
4  https://mimic.physionet.org/ 
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Haoran et al. [20] used deep learning approaches to automatically assign ICD-9 

codes to discharge summaries from MIMIC-III database. They achieved a F1-score of 

53%. Their results were obtained by not using the entire discharge summary; their 

experiments only considered the sections of ‘discharge diagnosis’ and ‘final diagno-

sis’, where the description of patient diagnoses is found. Therefore, such approach 

was very dependent on the specificities of the database and presents difficulties to be 

generalized. 

To the best of our knowledge based on the literature review, most of studies did not 

perform optimization of machine learning parameters. The studies have chosen the 

parameter values of the algorithms arbitrarily according to our interpretation. In addi-

tion, most of studies did not use approaches to address the problem of imbalanced 

class. 

3 Materials and Methods 

In this section, we present the materials and methods we used in the development of 

this work. We present the database used for testing and the procedure performed for 

model construction. 

3.1 Dataset 

The dataset used to extract the corpus of discharge summaries and respective ICD 

codes was MIMIC III. The discharge summaries correspond to 53.423 hospital admis-

sions for adult patients between 2001 and 2012. ICD-9 was used to assign diagnosis 

codes to discharge diagnoses.  

MIMIC III repository contains 55.177 discharge summaries and 6.985 different di-

agnosis codes. Only the 100 most frequent diagnostics were considered in this work. 

Therefore, we selected discharge summaries that had at least one of the 100 most 

frequent codes, resulting in 53.018 discharge summaries. 

The distribution of labels among the samples is strongly imbalanced. The top three 

ICD-9 codes are:  

 Unspecified essential hypertension (401.9) – present in 37.5% of the records 

 Congestive heart failure, unspecified (428.0) – present in 23.8% of the records 

 Atrial fibrillation (427.31) – present in 23.4% of the records 

The hundredth most frequent ICD-9 code is “personal history of malignant neo-

plasm of prostate” (V10.46), which is presented in only 2% of the discharge summar-

ies. 

3.2 Procedure 

We defined a pipeline to perform the classification task aiming to detect the ICD 

codes from the discharge summaries. Figure 1 presents the involved stages: pre-

processing, dataset splitting, feature extraction, parameter search, and creation of 
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prediction model. The following subsection describe details of the conducted proce-

dure. 

 

Fig. 1. Pipeline performed to construct the model for automated ICD Coding 

Data Handling. We constructed our dataset extracting all discharge summaries and 

respective diagnosis list from MIMIC III database. Therefore, each record in the da-

taset consists in a discharge summary and its respective ICD-9 codes list, which is 

represented by a vector of 100 dimensions in which each dimension corresponds to an 

ICD-9 code. For a specific label in the record, if the corresponding ICD-9 code ap-

pears in the discharge summary diagnoses list, then its value in the vector is one, oth-

erwise is zero. 

For illustration purpose, Table 1 presents a sample of a record from the database. 

The first column represents the free-text of a discharge summary. The remaining col-

umns represent each diagnosis code (class), where the column value is 1 or 0, depend-

ing whether the respective diagnosis was encoded for that discharge summary or not. 
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Table 1. Sample of a record in the dataset 

Discharge Summary Text 
4019  

(class 1) 

4280  

(class 2) 
… 

E8782  

(class 90) 

V1046  

(class 

100) 

[...] 

Allergies: 

Amlodipine 

 

Attending:[**First  (LF) 

898**] 

Chief Complaint: 

COPD exacerbation / 

Shortness of Breath 

 

Major Surgical or Invasive 

Procedure: 

Intubation 

arterial line placement 

PICC line placement 

Esophagogastroduodenos-

copy 

 

History of Present Illness: 

87 yo F with h/o CHF, COPD 

on 5 L oxygen at baseline, 

tracheobronchomalacia s/p 

stent, presents with acute 

dyspnea over several days, 

and lethargy. [...] 

1 0 … 0 0 

Dataset Splitting, Pre-processing, and Feature Extraction.  Out of 53.018 dis-

charge summaries, 80% were used for training and 20% for testing. The definition of 

the sets was performed in a stratified manner to maintain the proportion of classes in 

both sets. The training set was then used to define a vocabulary of tokens. Before 

tokenization, we implemented pre-processing actions expecting to improve the quality 

of classification and to reduce the index size of the training set. The following pre-

processing tasks were performed: stop word removal, lemmatization, number remov-

al, and special characters removal.   

In stop word removal task, words that occur commonly across all the documents in 

the corpus are removed instead of being considered as a token. Generally, articles and 

pronouns are considered as stop words because they are not very discriminative. 

lemmatization which consists in a linguistic normalization. The variant forms of a 

term are reduced to a common form (lemma). The lemmatization process acts remov-

ing prefixes or suffixes of a term, or even transforming a verb to its infinitive form 

[21]. For stop word removal, we used the stop word removal function of the feature 



8 

extraction module of the scikit-learn5 library. For lemmatization, we used the class 

WordNetLemmatizer from Natural Language Toolkit (NLTK)6 library. 

The processed discharge summaries were then tokenized using unigram and bi-

gram with TF-IDF weighting as features. The tokens with a document frequency 

strictly higher than 70% or lower than 1% were ignored resulting in 12.703 tokens. In 

this sense, we took the decision that the vocabulary as features does not contain too-

frequent or too-rare unigrams and bigrams. 

Parameters Searching and Prediction Model Creation. In this study, the classifica-

tion task consisted in a multi-label classification in which one or more labels are as-

signed to a given record from the dataset. We used the Binary Relevance method to 

transform the multi-label problem into several binary classification problems. There-

fore, we created one classifier per ICD-9 code.  

We explored the SVM algorithm. SVM has important parameters like kernel, C, 

and gamma, which values have to be chosen for the training task. The majority of the 

studies found in literature for the code assignment problem, according to our 

knowledge, select parameters values arbitrarily. We assume that this decision might 

decrease the algorithm effectiveness. In this work, we performed a parameter search 

step, in which the training process was performed for each possible combination of 

predefined parameter values. The range of values for each parameter was defined as 

follows: 

 Parameter kernel: [Linear, Radial Basis Function (RBF)] 

 Parameter C: [0.02, 0.2, 1.0, 2.0, 4.0] 

 Parameter gamma: [0.02, 0.2, 1.0, 2.0, 4.0]. Applicable only to the RBF kernel. 

The parameter kernel specifies whether the SVM will perform a linear or a non-

linear classification. To perform a linear classification, the kernel should be ‘linear’ 

while performing a non-linear classification requires a non-linear kernel, such as RBF 

[22]. The parameter C is related to the size of the margin of the SVM hyperplane, 

where low values of C will result in a large margin and high values of C result in a 

small margin. The size of the margin is strongly related to misclassification, because 

the smaller the margin, the smaller the misclassification [22]. However, lower mis-

classification on training set does not implicate in lower misclassification on testing 

set. Therefore, a larger margin may result in a more generalized classifier. Gamma is 

a free parameter of the Gaussian function of the RBF kernel. 

Due to the unbalance of classes, another important parameter we considered was 

class weight. With this parameter, it was possible to penalize mistakes on the minority 

class proportionally to how under-represented it is. The initial weight for a class was 

computed as N / (2 x M), in which N is the number of records and M refers to the 

number of records in the respective class. This formula is widely used to deal with 

                                                           
5  http://scikit-learn.org/stable/ 
6  https://www.nltk.org/ 
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imbalanced classes in classification problems, because the lower the number of sam-

ples in a particular class, the higher is the initial weight. 

The initial weight might be not enough to obtain a good effectiveness for too im-

balanced classes. Therefore, besides using the initial weight value, we also used two 

higher values. We used the following range for class weight parameter: [None, initial 

weight, initial weight + 2, initial weight + 4]. 

According to the number of parameters and respective range of values, it was nec-

essary to perform 90 SVM trainings (15 for linear kernel and 75 for RBF kernel). Due 

to computational power limitations, the parameter searching was performed in a sub-

set corresponding to 30% of samples of the training set (12.724 samples). That subset 

was split in a second training set (80%) and validation (20%) set. Figure 2 illustrates 

the dataset splitting process. 

 

 

Fig. 2. Dataset splitting process 

A SVM model was created for each parameter combination using the second train-

ing set. The analysis of the model was tested in the validation set through the calcula-

tion of f1-score. The parameter combination values with best results were then select-

ed as parameter values in the creation of the prediction model. Once one model is 

created for each class, such values can be different for distinct classes. 

After the study concerning the parameters, the creation of prediction model (for 

each class) was performed using the training set with 42414 records (80% of the 

53018 discharge summaries). The effectiveness of the method was evaluated in the 

test set with 10.604 records. To this end, we explored the following evaluation met-

rics: recall, precision, and f1-score. 
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4 Results and Discussion 

In this section, we present the results obtained with the construction of the classifica-

tion model for ICD coding task. We highlight the influence of parameters optimiza-

tion and the use of class weighting in the model construction. 

4.1 Influence of Parameters and Class Weighting 

After performing the searching for best combination of parameter values, we found 

that such values widely vary along the classes. The parameter ‘C’ varied between the 

following values: 1.0 (37 classes), 2.0 (31 classes), 0.2 (17 classes) and 4.0 (15 clas-

ses). For the ‘gamma’ parameter (applicable only to the RBF kernel), most classes 

presented the best results with the value 0.2 (52 classes), whereas five classes present-

ed a value of 1.0 and three classes presented a value of 0.02. 

For the ‘kernel’ parameter, 40 classes presented best results with a linear kernel, 

whereas 60 classes achieved better results with the RBF kernel. These results indicat-

ed the relevance of considering the RBF kernel. Usually, most studies in literature for 

ICD coding has approached the problem only using the linear kernel. 

We addressed the problem of imbalanced classes with the use of class weighting. 

From 100 class in total, only two classes performed better without the need of using 

class weighting. These classes correspond to the diagnostics 276.8 – “Hypopotasse-

mia” and 769 – “Respiratory distress syndrome in newborn” in ICD-9. The remaining 

98 classes presented best results with the use of class weighting, highlighting the rele-

vance of considering the class weighting as an approach to address the imbalanced 

class problem. According to the authors’ knowledge, no other study has used this 

approach in literature for the studied problem.  

4.2 Classifier effectiveness 

As previously mentioned, we tested the effectiveness of each model using the testing 

set.  Table 2 summarizes the obtained results. We reached 49.86% for the f1-macro 

metric, which represents the mean of f1-score for all classes. The mean for recall 

score was 68.61% and the mean for precision score was 41.94%. 

 

Table 2. – Results summary 

 Precision Recall F1-macro 

Value 41.94% 68.61% 49.86% 

Standard deviation 19.94% 14.67% 18.64% 

 

Table 3 presents the five classes with worst f1-score whereas Table 4 presents the 

five classes with best f1-score. The column “frequency index” in Tables 3 and 4 rep-

resents the position of the diagnosis in the database. For example, the diagnosis 42731 

– “Atrial fibrillation” is the third most frequent diagnosis, whereas 99591 – “Sepsis” 
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is the 92nd most frequent diagnosis. The higher the frequency index value, the lower 

the frequency of this diagnosis and, therefore, the more imbalanced is the respective 

class.  

 

Table 3. – Five worst results and their respective classes 

Diagnosis 
Frequency 

index 
Precision Recall F1-macro 

E8788 - Other specified sur-

gical operations and proce-

dures causing abnormal pa-

tient reaction, or later compli-

cation, without mention of 

misadventure at time of oper-

ation 

84 8.23% 76.40% 14.86% 

27652 - Hypovolemia 81 9.91% 56.55% 16.87% 

E8798 - Other specified pro-

cedures as the cause of ab-

normal reaction of patient, or 

of later complication, without 

mention of misadventure at 

time of procedure 

69 13.22% 42.22% 20.14% 

99591 - Sepsis 92 12.41% 68.85% 21.03% 

2930 - Delirium due to condi-

tions classified elsewhere 
73 13.73% 65.14% 22.68% 

 

Table 4. – Five best results and their respective classes 

Diagnosis 
Frequency 

index 
Precision Recall F1-macro 

42731 - Atrial fibrillation 3 84.49% 88.86% 86.62% 

V3000 - Single liveborn, born 

in hospital, delivered without 

mention of cesarean section 

24 83.94% 89.26% 85.52% 

7742 - Neonatal jaundice 

associated with preterm de-

livery 

48 76.17% 97.98% 85.71% 

V3001 - Single liveborn, born 

in hospital, delivered by ce-

sarean section 

36 81.05% 90.31% 85.43% 

V290 - Observation for sus-

pected infectious condition 
13 76.33% 93.80% 84.17% 
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Results indicated that the classes presenting the worst effectiveness correspond to 

the most imbalanced classes. This suggests that the more diagnoses we consider, the 

lower the effectiveness of the model (cf. Figure 3). For example, if we consider only 

the first 20 most frequent diagnostics, we obtain 65.43% of f1-macro against 49.86% 

if we consider the 100 most frequent diagnostics. 

 

Fig. 3. – Variation of f1-macro in relation to the number of classes 

5 Conclusion 

In this work, we constructed a model based on machine learning approaches for the 

task of automated ICD coding from free-text discharge summaries. The results we 

obtained highlight the importance of optimization of parameter as well as the use of 

class weighting approach to deal with imbalanced class problem. 

We also highlight some limitations of this work. The computational power re-

strictions limited the range of parameters values to test as well as the number of sam-

ples in the second training set used for parameter optimization. We considered only 

the 100 most frequent diagnostics out of 6,985 diagnostics present in the database. 

Therefore, the most imbalanced classes (the less frequent diagnosis) were not consid-

ered. However, it is important to note that 96.6% of the diagnostics were assigned to 

only 1% or less of the discharge summaries. 

Another important limitation is related specifically to the database characteristics. 

Most of the free-text discharge summaries present misspelling and abbreviations, 

which may have impaired the model effectiveness. In addition, the process of manual-

ly coding itself may have errors, which may have led to incorrect or incomplete list of 

diagnostics.  
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