A Knowledge-driven Pipeline from Transforming
Big Data into Actionable Knowledge

o s : 1411,2[0000—0003—1160—8727
Maria-Esther Vidal®-2! i
:-2,1[0000—0001—9040—9421
Kemele M. Endris®!! I,
Samaneh Jozashoorj?1[0000—0003—-1702=8707] "5y
Guillermo Palma2!10000—0002—8111-2439]

L TIB Leibniz Information Centre for Science and Technology, Germany
2 L3S Institute, Leibniz University of Hannover, Germany
maria.vidal@tib.eu
{endris| jozashoori|palma}@l3s.de

Abstract. Big biomedical data has grown exponentially during the last
decades, as well as the applications that demand the understanding and
discovery of the knowledge encoded in available big data. In order to ad-
dress these requirements while scaling up to the dominant dimensions of
big biomedical data —volume, variety, and veracity— novel data integra-
tion techniques need to be defined. In this paper, we devise a knowledge-
driven approach that relies on Semantic Web technologies such as on-
tologies, mapping languages, linked data, to generate a knowledge graph
that integrates big data. Furthermore, query processing and knowledge
discovery methods are implemented on top of the knowledge graph for
enabling exploration and pattern uncovering. We report on the results
of applying the proposed knowledge-driven approach in the EU funded
project iASiS® in order to transform big data into actionable knowledge,
paying thus the way for precision medicine and health policy making.

1 Introduction

Big data plays an important role in promoting sustained economic growth of
countries and companies through industrial digitization, and emerging scientific
and interdisciplinary research. Specifically, significant contributions have been
achieved by conducting big data-driven studies over clinical and genomic data
with the aim of supporting precision medicine [11]. Exemplary contributions in-
clude big data analytics over Electronic Health Records (EHRs) of nearly three
million people and trillions of pieces of medical data for identifying associations
between the use of proton-pump inhibitors and the likelihood of incurring a
heart attack [12]. Despite the significant impact of big data, we are entering
into a new era where domains like genomic, are projected to grow very rapidly
in the next decade, reaching more than one Zetta bytes of heterogeneous data
per year by 2025 [14]. In this next era, transforming big data into actionable
big knowledge will require novel and scalable tools for enabling not only big
data ingestion and curation, but also for efficient large-scale knowledge extrac-
tion, integration, exploration, and discovery. In this poster paper, we describe a

3 http://project-iasis.eu/
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Fig. 1. A Knowledge-Driven Pipeline. Heterogeneous data sources are received as
input, and a knowledge graph and unknown patterns and relations are output. The
knowledge graph is linked to related knowledge graphs; federated query processing
and knowledge discovery techniques enable knowledge exploration and discovery. Data
privacy and access regulations imposed by data providers are enforced.

knowledge-driven pipeline devised with the aim of addressing these challenges.
The pipeline resorts to text mining, image processing methods, and ontologies to
extract knowledge encoded in unstructured Big data and to describe extracted
knowledge with terms from ontologies. Then, extracted knowledge is integrated
into a knowledge graph. A unified schema is used to describe and structure
the extracted in the knowledge graph. Annotations from ontologies provide the
basis for data integration and for linking integrated data with equivalent con-
cepts in existing knowledge graphs. Finally, knowledge discovery is performed by
exploring and analyzing the knowledge graph. The proposed knowledge-driven
approach is being utilized to integrate biomedical data, e.g., drugs, genes, muta-
tions, side effects, with clinical records, medical images, and geneomic data. As
a result, a knowledge graph with more than 250 million RDF triples has been
created. Albeit initial, this knowledge graph enables the discovery of patterns
that could not be found in raw data. Patterns include mutations that impact on
the effectiveness of a drug, side-effects of a drug, and drug-target interactions.

2 A Knowledge-Driven Pipeline

Our knowledge-driven pipeline receives big data sources in different formats,
e.g., clinical notes, images, scientific publications, and structured data. It gener-
ates a knowledge graph from which unknown patterns and relationships can be
discovered; Figure 1 depicts the following main components of the pipeline:

EHR Text Analysis: Semi-automatic data curation techniques are utilized
for data quality assurance, e.g., removing duplicates, solving ambiguities, and



completing missing attributes. Natural Language Processing (NLP) techniques
are applied to extract relevant entities from unstructured fields, i.e., clinical notes
or lab test results. NLP techniques rely on medical vocabularies, e.g., Unified
Medical Language System (UMLS) 4 or Human Phenotype Ontology (HPO) 5,
NLP corpuses and tools, e.g., lemmatization or Named Entity Recognition, to
annotate concepts with terms from medical vocabularies.

Genomic Analysis: Data mining tools, e.g., catRapid [7], are applied to iden-
tify protein-RNA associations with high accuracy. Publicly available datasets,
e.g., data from GTEx, GEO, and ArrayExpress, are used for the integration
with transcriptomic data. Finally, this component relies on the Gene Ontology
to determine key genes for lung cancer and interactions between these genes.
Furthermore, genes are annotated with identifiers from different databases, e.g.,
HUGO or Uniprot/SwissProt, as well as Human Phenotype Ontology (HPO).

Image Analysis: Machine learning algorithms are employed to learn predictive
models able to classified medical images and detect lung tumors.

Open Data Analysis: NLP and network analysis methods enable the semantic
annotation of entities from biomedical data sources using biomedical ontologies
and medical vocabularies, e.g., UMLS or HPO. Data sources include PubMed®,
COSMIC?, DrugBank®, and STITCH®?. Annotated datasets comprise entities
like mutations, genes, scientific publications, biomarkers, side effects, transcripts,
proteins, and drugs, as well as relations between these entities.

A knowledge graph is created by semantically describing entities using a unified
schema. Annotations are exploited by semantic similarity measures [10] with
the aim of determining relatedness between the entities included in the knowl-
edge graph, as well as for duplicate and inconsistency detection. Related entities
are integrated into the knowledge graph following different fusion policies [3].
Fusion policies resemble flexible filters tailored for specific tasks, e.g., keep all
literals with different language tags or retain an authoritative value; replace one
attribute with another; merge all the attributes of an entity in the knowledge
graph; etc. Ontological axioms of the dataset annotations are fired for resolving
conflicts and inequalities during the evaluation of the fusion policies. Entities
in the knowledge graph are linked to equivalent entities in knowledge graphs in
the Linked Open Data Cloud. Linking techniques resort to semantic similarity
metrics and the semantic encoded in the ontologies of the different knowledge
graphs, for determining when entities in different knowledge graphs, e.g., muta-
tions and genes in TCGA-A '°. Knowledge represented in the knowledge graph

4 https://www.nlm.nih.gov/research/umls/
® https://hpo. jax.org/app/

S https://www.ncbi.nlm.nih.gov/pubmed/

" https://cancer.sanger.ac.uk/cosmic

8 https://www.drugbank.ca/

9 http://stitch.embl.de/

10 http://tcga.deri.ie/
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Fig. 2. Connectivity of IASIS-KG. Graph representing the connectivity of the RDF
classes in IASIS-KG, and DBpedia and Bio2RDF. All the RDF classes are connected.

and links to other knowledge graphs, is explored by a federated query processing
engine, and knowledge discovery methods are used to uncover patterns in the
knowledge graphs. Finally, data privacy and access controlled regulations are
enforced during the execution of the tasks of the pipeline [4].

3 Initial Results

Following the proposed knowledge-driven pipeline, data from twelve datasets has
been integrated. A unified schema allows for data description in a knowledge
graph; it includes 49 classes, 56 ObjectProperty, and 74 DatatypeProperty.
The number of properties per class in the unified schema ranges from five to
80; the majority of the classes have less than 10 properties, and classes with
a higher number of properties correspond to superclasses which inherit all the
properties of their subclasses. The process of graph creation enables the creation
of a knowledge graph with 236,512,819 RDF triples, 26 RDF classes, and in
average, 6.98 properties per entity; it is named as TASIS-KG. In average there
are 86,934.00 entities per RDF class, some RDF classes may have up to 20
million entities. Figure 2 shows the connectivity between the RDF classes in
TASIS-KG; there are 35 nodes in the graph, while 58 edges represent links among
RDF classes. Also, it can be observed that all the RDF classes are connected
to at least one RDF class, i.e., there are no isolated classes. These statistics
facilitate the understanding of the amount of represented knowledge, as well as
the opportunities offered by TASIS-KG for knowledge exploration and discovery.

4 Related Work

Biomedical datasets are characterized by the “Vs” challenges of big data, i.e.,
volume, velocity, variety, veracity, value, and variability[13]. To address the data



complexity issues imposed by these challenges, novel paradigms and technolo-
gies have been proposed in the last years. Exemplary platforms include the Big-
DataEurope platform [1], an easy-to-deploy architecture that combines technolo-
gies to process large and heterogeneous sources. An extensive literature analysis
on big data methods [13]indicates that the state of the art focuses on specific di-
mensions of data complexity, whereas isolated solutions are not sufficient to meet
the demands imposed by the transformation of big data into actionable knowl-
edge (Jagadish et al., 2014). In order to represent the meaning of biomedical en-
tities several ontologies and controlled vocabularies have been defined, e.g., HPO
and UMLS. These ontologies are commonly utilized to provide a unique represen-
tation of concepts extracted from unstructured or structured datasets [9]. Like-
wise, knowledge graphs are especially important in knowledge representation,
because they provide a common knowledge structure to integrate and semanti-
cally describe the meaning of entities from diverse domains. Generic knowledge
graphs like DBpedia [6] and Yago [8], or) describe generic facts, e.g., persons,
organizations, or cities, while more specific knowledge graphs like KnowLife [5]
and Bio2RDF [2] exploit domain specific vocabularies like UMLS to integrate
biomedical data items like publications, genes, mutations, drugs, and diseases.
Similarly, the proposed knowledge-driven approach relies on semantic annota-
tions from ontologies, e.g., HPO and UMLS. However, in contrast to existing
approaches, these annotations are used as building blocks for the semantic inte-
gration process and well as curation. Thus, this solution is able to scale up to the
veracity and variety characteristics of the collected heterogeneous biomedical.

5 Conclusions

A knowledge-driven pipeline for transforming Big data into a knowledge graph is
presented; it comprises components that enable knowledge extraction, a knowl-
edge graph creation, and knowledge management and discovery. As a proof of
concept, the proposed pipeline has been applied in the context of the European
Union Horizon 2020 funded project iASiS. As a result, a knowledge graph with
more than 230 million RDF triples have been created. This knowledge graph
includes mutations that impact on the effectiveness of a drug, side-effects of a
drug, and drug-target interactions, and represents a building block for the ex-
ploration and discovery of potential novel patterns. Furthermore, initial results
illustrate the feasibility of the approach, as well as the relevant role of Semantic
Web technologies and ontologies in the process of data integration. In the fu-
ture, this pipeline will be used in other biomedical use cases, and novel machine
learning approaches over the knowledge graph will be implemented.
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