
Using Semantic Programming for Developing a Web

Content Management System for Semantic Phenotype

Data

Vogt, Lars
1[0000-0002-8280-0487]; Baum, Roman

1[0000-0001-5246-9351]
; Köhler, Christian

1[0000-

0001-6966-7901]
; Meid, Sandra

1[0000-0003-4627-1853]
; Quast, Björn

2[000-0002-3760-5834]
 and Grobe,

Peter
2[0000-0003-4991-5781]

1 Universität Bonn, IEZ, An der Immenburg 1, 53121 Bonn, Germany
2 Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113 Bonn,

Germany

lars.m.vogt@googlemail.com

Abstract. We present a prototype of a semantic version of Morph·D·Base that

is currently in development. It is based on SOCCOMAS, a semantic web con-

tent management system that is controlled by a set of source code ontologies

together with a Java-based middleware and our Semantic Programming Ontolo-

gy (SPrO). The middleware interprets the descriptions contained in the source

code ontologies and dynamically decodes and executes them to produce the

prototype. The Morph·D·Base prototype in turn allows the generation of in-

stance-based semantic morphological descriptions through completing input

forms. User input to these forms generates data in form of semantic graphs. We

show with examples how the prototype has been described in the source code

ontologies using SPrO and demonstrate live how the middleware interprets the-

se descriptions and dynamically produces the application.

Keywords: semantic programming, phenotypic data, linked open data, seman-

tic Morph∙D∙Base, semantic annotation, morphological data

1 Introduction

Ontologies are dictionaries that consist of labeled classes with definitions that are

formulated in a highly formalized canonical syntax and standardized format (e.g. Web

Ontology Language, OWL, serialized to the Resource Description Framework, RDF),

with the goal to yield a lexical or taxonomic framework for knowledge representation

[1]. Ontologies are often formulated in OWL and thus can be documented in the form

of class-based semantic graphs
1
. Ontologies contain commonly accepted domain

1 A semantic graph is a network of RDF/OWL-based triple statements, in which a given Uni-

form Resource Identifier (URI) takes the Object position in one triple and the Subject posi-

tion in another triple. This way, several triples can be connected to form a semantic graph.

Because information about individuals can be represented as a semantic graph as well, we

distinguish class- and instance-based semantic graphs.

https://orcid.org/0000-0003-4991-5781
https://orcid.org/0000-0003-4991-5781

2

knowledge about specific kinds of entities and their properties and relations in form of

classes defined through universal statements [2,3], with each class possessing its own

URI, through which it can be identified and individually referenced. Ontologies in

this sense do not include statements about individual entities. Statements about indi-

vidual entities are assertional statements. In an assertional statement individuals can

be referred to through their own URI and their class affiliation can be specified by

referencing this class' URI. If assertional statements are grounded in empirical

knowledge that is based on observation and experimentation, we refer to them as

empirical data. Empirical data can be formulated in OWL and thus documented in the

form of instance-based semantic graphs. As a consequence, not every OWL file and

not every semantic graph is an ontology—it is an ontology only if it limits itself to

express universal statements about kinds of entities [3]. A knowledge base, in con-

trast, consists of a set of ontology classes that are populated with individuals and

assertional statements about these individuals [3] (i.e. data). Ontologies do not repre-

sent knowledge bases, but are part of them and provide a means to structure them [4].

By providing a URI for each of their class resources, ontologies can be used to

substantially increase semantic transparency and computer-parsability for all kinds of

information. Respective URIs are commonly used for semantically enriching docu-

ments and annotating database contents to improve integration and interoperability of

data, which is much needed in the age of Big Data, Linked-Open-Data and eScience

[5–7]. Ontologies and their URIs also play an important role in making data maximal-

ly findable, accessible, interoperable and reusable (see FAIR guiding principle [8])

and in establishing eScience-compliant (meta)data standards [6,7,9–12].

An increasing number of organizations and institutions recognize the need to com-

ply with the FAIR guiding principle and seek for technical solutions for efficiently

managing the accessibility, usability, disseminability, integrity and security of their

data. Content management systems in form of knowledge bases (i.e. Semantic web

content management systems, S-WCMS) have the potential to provide a solution that

meets both the requirements of organizations and institutions as well as of eScience.

Despite the obvious potential of ontologies and semantic technology in data and

knowledge management, their application is usually restricted to annotating existing

data in relational database applications. Although tuple stores that store information

as RDF triple statements are capable of handling large volumes of triples and alt-

hough semantic technology facilitates detailed data retrieval of RDF/OWL-based data

through SPARQL [13] endpoints and inferencing over OWL-based data through se-

mantic reasoners, not many content management systems have implemented ontolo-

gies to their full potential. We believe that this discrepancy can be explained by a lack

of application development frameworks that are well integrated with RDF/OWL.

2 Semantic Programming

2.1 Semantic Programming Ontology (SPrO)

With SPrO [14] we extend the application of ontologies from providing URIs for

annotating (meta)data and documenting data in form of semantic graphs stored and

3

managed in a S-WCMS to using an ontology for software programming. We use

SPrO like a programming language with which one can control a S-WCMS by de-

scribing it within a corresponding source code ontology. SPrO defines ontology re-

sources in the form of classes, individuals and properties that the accompanying Java-

based middleware interprets as a set of commands and variables. The commands are

defined as annotation properties. Specific values and variable-carrying resources are

defined as ontology individuals. Additional object properties are used to specify rela-

tions between resources, and data properties are used for specifying numerical values

or literals for resources that describe the S-WCMS.

SPrO can be used to describe all features, workflows, database processes and func-

tionalities of a particular S-WCMS, including its graphical user interface (GUI). The

descriptions at their turn are contained in one or several source code ontologies in

form of annotations of ontology classes and ontology individuals. Each annotation

consists of a command followed by a value, index or resource and can be extended by

axiom annotations and, in case of individuals, also property annotations. Contrary to

other development frameworks that utilize ontologies (e.g. [15,16]), you can use the

resources of SPrO to describe a particular content management application within its

corresponding source code ontology. The application is thus self-describing. The

accompanying Java-based middleware decodes the descriptions as declarative specifi-

cations of the content management application, interprets them and dynamically exe-

cutes them on the fly. We call this approach semantic programming.

2.2 Semantic Ontology-Controlled Application for Web Content Management

Systems (SOCCOMAS)

SOCCOMAS [17] is a semantic web content management system that utilizes SPrO

and its associated middleware. It consists of a basic source code ontology for

SOCCOMAS itself (SC-Basic), which contains descriptions of features and work-

flows typically required by a S-WCMS, such as user administration with login and

signup forms, user registration and login process, session management and user pro-

files, but also publication life-cycle processes for data entries (i.e. collections of

assertional statements referring to a particular entity of a specific kind, like for in-

stance a specimen) and automatic procedures for tracking user contributions, prove-

nance and logging change-history for each editing step of any given version of a data

entry. All data and metadata are recorded in RDF following established (meta)data

standards using terms and their corresponding URIs from existing ontologies. Each

S-WCMS run by SOCCOMAS provides human-readable output in form of HTML

and CSS for browser requests and access to a SPARQL endpoint for machine-

readable service requests. Moreover, it assigns a DOI to each published data entry and

data entries are published under a creative commons license. When a data entry is

published, it becomes openly and freely accessible through the Web. Hence, all data

published by a S-WCMS run by SOCCOMAS reaches the five star rank of Tim Bern-

ers-Lee's rating system for Linked Open Data [18].

The descriptions of the features, processes, data views, HTML templates for input

forms, specifications of input control and overall behavior of each input field of a

particular S-WCMS are contained in its accompanying source code ontology, which

4

is specifically customized to the needs of that particular S-WCMS. These descriptions

also include specifications of the underlying data scheme that determines how user

input triggers the generation of data-scheme-compliant triple statements and where

these triples must be saved in the Jena tuple store in terms of named graph
2
 and work-

space (i.e. directory). For instance the morphological data repository semantic

Morph·D·Base has its own source code ontology for its morphological description

module (SC-MDB-MD [20]) that is specifically customized to the needs of semantic

Morph·D·Base [19] (Fig. 1).

Fig. 1. Overall workflow of semantic Morph·D·Base [19] run by SOCCOMAS. Left: Jena

tuple store containing the data of semantic Morph·D·Base as well as (i) the Semantic Pro-

gramming Ontology (SPrO), which contains the commands, subcommands and variables used

for describing semantic Morph·D·Base, (ii) the source code ontology for SOCCOMAS (SC-

Basic), which contains the descriptions of general workflows and features that can be used by

any S-WCMS, and (iii) the particular source code ontology for the morphological description

module of semantic Morph·D·Base (SC-MDB-MD), which has been individually customized

to contain the description of all features that are special to semantic Morph·D·Base. Middle: the

Java-based middleware. Right: the frontend based on the JavaScript framework AngularJS with

HTML and CSS output for browser requests and access to a SPARQL endpoint for machine

requests.

This way, the developers of semantic Morph·D·Base can use the general function-

ality that comes with SC-Basic and add upon that the features specifically required for

semantic Morph·D·Base by describing them in SC-MDB-MD using the commands,

values and variable-carrying resources from SPrO. After semantic Morph·D·Base

goes online, its developers can still describe new input fields in SC-MDB-MD or new

types of data entries in respective additional source code ontologies and therewith

update semantic Morph·D·Base without having to program in other layers.

The application descriptions contained in SC-Basic and SC-MDB-MD organize the

Jena tuple store into different workspaces, which at their turn are organized into dif-

2 A named graph identifies a set of triple statements by adding the URI of the named graph to

each triple belonging to this named graph, thus turning the triple into a quad. The Jena tuple

store can handle such quadruples. The use of named graphs enables partitioning data in an

RDF store.

5

ferent named graphs, each of which belongs to a particular class of named graphs.

This enables differentially storing data belonging to a specific entry or version of an

entry into different named graphs, which in turn allows for flexible and meaningful

fragmentation of data and flexible definition of different data views.

2.3 Semantic Morph·D·Base as a Use-Case

Morphological data drive much of the research in life sciences [21,22], but are usually

still published as morphological descriptions in form of unstructured texts, which are

not machine-parsable and often hidden behind a pay-wall. This not only impedes the

overall findability and accessibility of morphological data. Due to the immanent se-

mantic ambiguity of morphological terminology, researchers who are not experts of

the described taxon will have substantial problems comprehending and interpreting

the morphological descriptions (see Linguistic Problem of Morphology [23]). This

semantic ambiguity substantially limits the interoperability and reusability of morpho-

logical data, with the consequence that morphological data usually do not comply

with the FAIR guiding principles [8].

Semantic Morph·D·Base [19] enables users to generate highly standardized and

formalized morphological descriptions in the form of assertional statements repre-

sented as instance-based semantic graphs. The main organizational backbone of a

morphological description is a partonomy of all the anatomical parts and their sub-

parts of the specimen the user wants to describe. Each such part possesses its own

URI and is indicated to be an instance of a specific ontology class. Semantic

Morph·D·Base allows reference to ontology classes from all anatomy ontologies

available at BioPortal [24]. Parts can be further described (i) semantically through

defined input forms, often referencing specific ontology classes from PATO [25],

resulting in an instance-based semantic graph that we call a Semantic Instance Anat-

omy [26,27], (ii) as semantically enriched free text, and (iii) through images with

specified regions of interest which can be semantically annotated. All this information

is stored in the tuple store and can be accessed through a web-based interface and a

SPARQL endpoint. The Semantic Instance Anatomy graph is meaningfully fragment-

ed into a sophisticated scheme of named graph resources, which additionally supports

subsequent data retrieval and data analyses.

Because semantic Morph·D·Base is run by SOCCOMAS, all description entries

not only possess their own unique URI, but also receive their own DOI when they are

published and are freely and openly accessible through the Web. All data and metada-

ta are stored as RDF triples in a Jena tuple store and can be searched using a SPARQL

endpoint. Instances and classes referenced in these triples have their own globally

unique and persistent identifiers and are findable through the endpoint. Both metadata

as well as the descriptions themselves reference resources of well established ontolo-

gies, which substantially increases their interoperability and reusability. As a conse-

quence, data and metadata in semantic Morph·D·Base comply with the FAIR princi-

ples.

Link to a live-demo of semantic Morph·D·Base: https://proto.morphdbase.de/

6

References

1. Smith, B.: Ontology. In: Floridi, L. (ed.) Blackwell Guide to the Philosophy of Computing

and Information, pp. 155–166. Blackwell Publishing, Oxford (2003).

2. Schulz, S., Stenzhorn, H., Boeker, M., Smith, B.: Strengths and limitations of formal

ontologies in the biomedical domain. RECIIS 3, 31–45 (2009).

3. Schulz, S., Jansen, L.: Formal ontologies in biomedical knowledge representation. IMIA

Yearb Med informatics 2013 8, 132–146 (2013).

4. Uschold, M., Gruninger, M.: Ontologies: Principles, Methods and Applications. Knowl

Eng Rev 11, 39–136 (1996).

5. Sansone, S.-A., Rocca-Serra, P., Tong, W., Fostel, J., Morrison, N., et al.; A Strategy

Capitalizing on Synergies: The Reporting Structure for Biological Investigation (RSBI)

Working Group. Omi A J Integr Biol 10, 164–171 (2006).

6. Vogt, L.: The future role of bio-ontologies for developing a general data standard in

biology: chance and challenge for zoo-morphology. Zoomorphology 128, 201–217 (2009).

7. Vogt, L., Nickel, M., Jenner, R.A., Deans, A.R.: The Need for Data Standards in

Zoomorphology. J Morphol 274, 793–808 (2013).

8. Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., Appleton, G., Axton, M., et al.: The

FAIR Guiding Principles for scientific data management and stewardship. Sci Data 3,

160018 (2016).

9. Brazma, A.: 2001) On the importance of standardisation in life sciences. Bioinformatics

17, 113–114 (2001).

10. Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., et al.: Minimum

information about a microarray experiment (MIAME)–toward standards for microarray

data. Nat Genet 29, 365–371 (2001).

11. Wang, X., Gorlitsky, R., Almeida, J.S.: From XML to RDF: how semantic web

technologies will change the design of “omic” standards. Nat Biotechnol 23, 1099–1103

(2005).

12. Vogt, L.: eScience and the need for data standards in the life sciences: in pursuit of

objectivity rather than truth. Syst Biodivers 11, 257–270 (2013).

13. SPARQL Query Language for RDF. W3C Recommendation 15 January 2008.

14. GitHub: Code for Semantic Programming Ontology (SPrO). Available:

https://github.com/SemanticProgramming/SPrO.

15. Wenzel, K.: KOMMA : An Application Framework for Ontology-based Software Systems.

Semant Web J swj89_0: 1–10 (2010).

16. Buranarach, M., Supnithi, T., Thein, Y.M., Ruangrajitpakorn, T., Rattanasawad, T., et al.:

OAM: An Ontology Application Management Framework for Simplifying Ontology-

Based Semantic Web Application Development. Int J Softw Eng Knowl Eng 26, 115–145

(2016).

17. GitHub: Code for Semantic Ontology-Controlled Web Content Management System

(SOCCOMAS). Available: https://github.com/SemanticProgramming/SOCCOMAS.

18. Berners-Lee, T.: Linked Data. (2009) Available:

https://www.w3.org/DesignIssues/LinkedData.html.

19. Semantic Morph•D•Base Prototype. Available: https://proto.morphdbase.de.

20. GitHub: Code for semantic Morph·D·Base prototype. Available:

https://github.com/MorphDBase/MDB-prototype.

21. Deans, A.R., Lewis, S.E., Huala, E., Anzaldo, S.S., Ashburner, M., et al.: Finding Our

Way through Phenotypes. PLoS Biol 13, e1002033 (2015).

7

22. Mikó, I., Deans, A.R.: Phenotypes in insect biodiversity research Phenotype data : past and

present. In: Foottit, R.G., Adler, P.H. (eds.) Insect Biodiversity: Science and Society, pp.

789–800. John Wiley & Sons, Ltd, Vol. II. (2018).

23. Vogt, L., Bartolomaeus, T., Giribet, G.: The linguistic problem of morphology: structure

versus homology and the standardization of morphological data. Cladistics 26, 301–325

(2010).

24. BioPortal. Available: http://bioportal.bioontology.org/.

25. Phenotype And Trait Ontology (PATO). Available:

http://obofoundry.org/ontology/pato.html.

26. Vogt, L.: Assessing similarity: on homology, characters and the need for a semantic

approach to non-evolutionary comparative homology. Cladistics 33, 513–539 (2017).

27. Vogt, L.: Towards a semantic approach to numerical tree inference in phylogenetics.

Cladistics 34, 200–224 (2018).

