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Abstract. Gene expression profiles help to capture the functional state
in the body and to determine dysfunctional conditions in individuals.
In principle, respiratory and other viral infections can be judged from
blood samples; however, it has not yet been determined which genetic
expression levels are predictive, in particular for the early transition
states of the disease onset. For these reasons, we analyse the expres-
sion levels of infected and non-infected individuals to determine genes
(potential biomarkers) which are active during the progression of the
disease. We use machine learning (ML) classification algorithms to de-
termine the state of respiratory viral infections in humans exploiting
time-dependent gene expression measurements; the study comprises four
respiratory viruses (H1N1, H3N2, RSV, and HRV), seven distinct clin-
ical studies and 104 healthy test candidates involved overall. From the
overall set of 12,023 genes, we identified the 10 top-ranked genes which
proved to be most discriminatory with regards to prediction of the in-
fection state. Our two models focus on the time stamp nearest to t = 48
hours and nearest to t = “Onset Time” denoting the symptom onset
(at different time points) according to the candidate’s specific immune
system response to the viral infection. We evaluated algorithms includ-
ing k-Nearest Neighbour (k-NN), Random Forest, linear Support Vector
Machine (SVM), and SVM with radial basis function (RBF) kernel, in
order to classify whether the gene expression sample collected at early
time point t is infected or not infected. The “Onset Time” appears to
play a vital role in prediction and identification of ten most discrimina-
tory genes.

Keywords: Machine learning · Respiratory viral infection · Prediction
· Deferentially expressed genes.

1 Introduction

Respiratory viral infections are common diseases which are caused by a wide
range of viruses, e.g., H1N1, H3N2, RSV and HRV, affecting the respiratory
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tract. While patients usually recover in a short period of time without any treat-
ment, respiratory viral infections can lead to severe outcomes among individuals
with other aggravating primary diseases, in particular, when these are deleteri-
ous to the function of the respiratory system. Such severe cases may increase the
likelihood of death in elderly or immuno-compromised individuals [14]. Moreover,
each influenza epidemic leads to an increase in healthcare costs through excessive
hospitalizations apart from the need for substantial amounts of vaccines, and the
spread of respiratory virus diseases affect all age groups and thus can lead to
periodic epidemics [25]. Overall, the early identification of respiratory viral in-
fections could be useful as a means to reduce large-scale outbreaks and periodic
epidemics as well as achieving early intervention for individual patients [13].

In this paper, we investigated the changes in gene expression distinguishing
infected individuals from non-infected ones. We use different ML methods to
determine the most predictive changes comparing samples from healthy and in-
fected individuals, using public data collected in seven different studies involving
healthy individuals before and after inoculation of the viruses. This data (gene
expression only) – generated from these seven challenge studies – has been re-
leased in 2016 and is available on Gene Expression Omnibus (GEO). In 2017,
the label information (non-infected vs. infected) associated with this dataset also
had been made available for open access to all. We use this label information
as a ground-truth for labeling the whole data. ML solutions form a vital role
in the identification of specific patterns, and subsequent functional annotation
of the identified genes can explain the causality behind the exposed patterns.
Gene expression changes often happen due to some regulatory markers, while
other genes behave as housekeeping genes. Therefore, identification of relevant
patterns and responsible regulatory markers at consistent time points should
yields credible biomarkers in such cases. In this work we identify top ten such
biomarkers which are found to be highly contributing in progression of respira-
tory viral infections at an early stage. The labeled data with code and build ML
models are available here: https://github.com/GhanshyamVerma/DILS_2018.

2 The Respiratory Viral Data Sets

We conducted ML experiments on the data collected from 7 Respiratory Viral
Challenge studies which is available for open access on GEO (accession number
GSE73072)4. These respiratory viral challenge studies consist of a total of 151
human volunteers, each of whom was exposed to one of 4 viruses, summarised
in Table 1 [12].

In Table 1, the first column represents the sub-study designation, the sec-
ond column denotes the type of virus used in the challenge, the third and the
fourth columns represent the year and the location of the conducted sub-study,
respectively, the fifth column represents the DUHS IRB protocol number, the
sixth column represents the duration of the sub-study in hours and the last two

4 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73072.
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Table 1. Details of the data collected in the seven respiratory virus challenge stud-
ies [12]

Challenge Virus Year Location
IRB

Protocol
Duration

(hrs)
#Subjects

#Time-
points

DEE1 RSV 2008 Retroscreen Pro00002796 166 20 21

DEE2 H3N2 2009 Retroscreen Pro00006750 166 17 21

DEE3 H1N1 2009 Retroscreen Pro00018132 166 24 20

DEE4 H1N1 2010 Retroscreen Pro00019238 166 19 21

DEE5 H3N2 2011 Retroscreen Pro00029521 680 21 23

HRV UVA HRV 2008 UoVirginia Pro00003477 120 20 15

HRV Duke HRV 2010 Duke Univ. Pro00022448 136 30 19

columns denote the number of subjects and the number of time-points collected
per subject, respectively [12].

All the participants were healthy when they enrolled for the study. After
enrolment in the study, all subjects were inoculated with one of the 4 viruses
(H1N1, H3N2, HRV, RSV). Their blood samples were taken at different pre-
defined time-points, thus delivering samples from non-infected individuals as well
as from infected ones. The samples from non-infected individuals were taken at
two time-points before the inoculation of the virus, as shown in Fig. 1 (inspired by
a figure by Liu et al. [12]). All the subjects were exposed to the virus immediately
after taking the healthy blood sample (at time-point 0). During each study, blood
samples were taken for twice before the inoculation of virus and at various time
stamps after the inoculation of virus. The whole blood gene expression data was
obtained using Affymetrix Human U133A 2.0 GeneChips. Additional details can
be found on GEO (accession number GSE73072).

Fig. 1. Layout describing characteristics of the data. Every cell depicting blood sample
taken at some point of time during the whole study and contains gene expression values
of 12,023 human genes.
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From the start, 151 subjects were enrolled in the 7 challenge studies, how-
ever, we had to exclude 47 subjects from the study. Among those 47 subjects, 44
subjects had inconsistencies between their declared symptomatic status and the
measured shedding status (see Table 2). These 44 clinically ambiguous subjects
were at some time either acutely infected but remained asymptomatic or were
not infected but did turn acutely symptomatic [12], therefore, we must conclude
that these 44 subjects data is inconsistent (faulty). We cannot draw any con-
clusions from faulty data. Moreover, faulty data can be misleading and harmful
while model building. Apart from these 44 subjects, three more subjects have
been excluded because there is no Affymetrix data available for them (subjects
6, 9 and 21 from the HRV Duke university sub study). We have identified those
47 ambiguous subjects whose data is faulty, removed them and the unambigu-
ous labeled data with code and build ML models can be accessed using a link
provided in the Introduction section.

Table 2. Detail of the ambiguous subjects those excluded due to inconsistencies be-
tween their declared symptomatic status and measured shedding status.

Sr. No. Challenge
Subject IDs

(Ambiguous subjects)
Total

(Ambiguous subjects)

1 DEE1 13, 15, 16 3

2 DEE2 2, 4 2

3 DEE3 1, 2, 5, 7, 11, 15, 18, 21, 23 9

4 DEE4 5, 7, 8, 9, 10, 11, 12, 13, 17, 19 10

5 DEE5 3, 7, 15, 16, 17 5

6 UoVirginia 1, 10, 12, 17 4

7 Duke Univ. 3, 10, 11, 15, 18, 20, 25, 27, 28, 29, 30 11

44

3 Experimental Design

The overall goal of our study is to analyze the ability of different ML algorithms
to predict the state of health and disease soon after the disease onset time. As
we do not have always data for each subject exactly the times we are interested
in, we have taken nearest available time-point. We make the assumption that
at t = 0, just before the inoculation, all the candidates are not sick and at
t = 48h (approximately) or at the onset time, the effect of virus inoculation
should be visible, and thus exposed in the gene expression data. After first
mining for expression patterns, we are also interested in finding the important
genes/biomarkers which are highly likely to contribute to the progression of the
respiratory viral infection.

After excluding the 47 ambiguous candidates, we were left with total 104
candidates, all of whom were healthy at t = 0. Out of these 104 healthy subjects,
64 became sick at some point of time after inoculation of the virus and the other
40 remained healthy during the whole study. There is no onset time for these
40 non-infected subjects, therefore, we took the average for the available onset
values, which was 55.01 hours after inoculation.
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Our main focus is on the gene expression levels when comparing the 40
subjects who did not become infected after inoculation with the 64 who did. We
designed 4 different experiments: for each experiment we made different use of
the number of subjects that got infected after inoculation and of the time-points
(48 hours vs. onset time).

Fig. 2. Experimental design for distinguishing infected subjects form non-infected sub-
jects by exploiting ML algorithm's ability to learn pattern.

We believe that our experiments play a useful role in determining the in-
volvement of particular genes in the states of infection at the early stage of the
disease. We took the data of all the unambiguous subjects and divided it into
four subsets as shown in Fig. 2. The details of the four experiments designed
using these four subsets of data can be seen in Fig. 3 and Fig. 4. For each of the
four subsets of the data, we partitioned the data into training and test sets, and
then applied four well established ML approaches. The random sampling is done
with preserving the class distribution to partition the whole data into training
and test. In order to reduce the risk of overfitting we have applied 10-fold cross
validation, repeated 3 times. The build model were then used to predict the
state of infection for the kept test data. Finally, the performance evaluation and
important gene identification steps have been carried out.

We identified 6 sets of data denoting different states, and labelled them State
A,B,B′, C,D,D′ (see Fig. 3). State A contains the gene expression profile of all
the 64 subjects which are healthy at time-point 0: these 64 subjects showed clear
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Fig. 3. A view of 4 experiments that comprises significant part of the overall experi-
mental design.

Table 3. Detail of the experiments designed by combining two or more states of sub-
jects status of gene expression profile.

Experiment No. States Description

1 (A+B)
64 subjects data collected

at 0 and nearest to 48 hours

2 (A+D)
64 subjects data collected

at 0 and nearest to onset time

3 (A+B +B′ + C)
104 subjects data collected

at 0 and nearest to 48 hours

4 (A+ C +D +D′)
104 subjects data collected at 0 and nearest

to onset or average onset time.

signs of infection at some point of time after the inoculation of the virus. States
B and D determine the gene expression profiles of the same 64 subjects at the
time-point nearest to 48 hours or nearest to onset time, respectively. State C
shows the gene expression profile of 40 subjects at 0 timestamp: these 40 subjects
never get infected throughout the duration of the study. States B′ and D′ show
the gene expression profiles of the same 40 subjects at nearest to 48 hours or at
nearest to average onset time, respectively.

We carried out four experiments by combining two or more of the above states
based on the number of infected and non-infected subjects and timestamps at
which their blood samples are collected. These experiments are designed in such
a way so that we can analyse the differences in disease prediction at two different
early stages and find the most important Differentially Expressed Genes (DEG)
across the different timestamps. The details of these experiments are shown
in table 3. The numbers of positive and negative samples for each designed
experiment at different time point are shown in Fig. 4.



7

Fig. 4. Positive and negative sample counts for each experiment at different time
points. Here P denotes positive samples (infected) and N denotes negative samples
(non-infected).

4 Methodology

In this section we briefly explain the methodology used for classifying the state
of health of any individual at any given time point t. It is well-known that no
single ML algorithm is best for all kind of datasets, so we tested a selection of
different ML approaches. In all experiments, 78% of the data is used for training
the classifiers and the remaining 22% is kept as a hold-out test set. The stratified
sampling is used to partition the whole data into training and test. To build the
ML model for each algorithm we estimated model parameters over the training
data using 10-fold cross validation, repeated 3 times.

First, we used the very simple baseline algorithm, k-NN which does not
have any in-build capability to deal with high dimensional data [4], however, it
can be used to set a base to compare the results and to see the improvements
yielded by more complex algorithms. We also used the Random Forest algorithm
which is an ensemble technique and has proven to be an efficient approach for
the classification of microarray data as well as for gene selection [5]. We then
employed both linear SVM [2] and SVM with RBF kernel which has inbuilt
capability to learn pattern from high dimensional data [17]. We have used R
programming language version 3.4.1 for coding [15].

4.1 k-Nearest Neighbour (k-NN)

k-NN has two stages, the first stage is the determination of the nearest neigh-
bours i.e. the value of k and the second is the prediction of the class label using
those neighbours. The “k” nearest neighbours are selected using a distance met-
ric [4]. We have used Euclidean distance for our experiments. This distance met-
ric is then used to determine the number of neighbours. There are various ways
to use this distance metric to determine the class of the test sample. The most
straightforward way is to assign the class that majority of k-nearest neighbours
has. In the present work, the optimum value of k is searched over the range of
k = 1 to 50. The best value of the parameter k obtained for each experiment
can be found in Section 5.
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4.2 Random Forest

Random Forest is often well-suited for microarray data. It can cope with noisy
data and can be used when the number of samples is much smaller than the num-
ber of features. Furthermore, it can determine the relevance of variables in the
decision process, which can be used for selecting the most relevant genes [5]. It is
based on the ensemble of many classification trees [11,18]. Each classification tree
is created by selecting a bootstrap sample from the whole training data and a ran-
dom subset of variables with size denoted as mtry are selected at each split. We
have used the recommended value of mtry : (mtry =

√
(number of genes)) [5].

The number of trees in the ensemble is denoted as ntree. We have used (ntree) =
10, 001 so that each variable can reach a sufficiently large likelihood to partici-
pate in forest building as well as in variable importance computations.

4.3 Support Vector Machine (SVM)

Assume that we have given a training set of instance-label pairs (xi, yi); ∀i ∈
{1, 2, ..., l} where xi ∈ Rn and y ∈ {1,−1}l, then the SVM [2, 7, 8] can be
formulated and solved by the following optimization problem:

min
w,b,ξi

1

2
wTw + C

l∑
i=1

ξi,

subject to yi
(
wTφ (xi) + b

)
≥ 1− ξi,

ξi ≥ 0.

Here the parameter C > 0 is the penalty parameter of the error term [8] and
ξi∀i ∈ {1, 2, ..., l} are positive slack variables [2]. For linear SVM, we did a search
for best value of parameter C for a range of values

(
C = 2−5, 2−3, ..., 215

)
and

the one with the best 10-fold cross validation accuracy has finally been chosen.
We also used SVM with RBF kernel which is a non-linear kernel. There

are four basic kernels that are frequently used: linear, polynomial, sigmoid, and
RBF. We picked the RBF kernel, as recommended by Hsu et al. [8]. It has the
following form:

K (xi,xj) = exp
(
−‖xi−xj‖2

2σ2

)
; 1
2σ2 > 0.

We performed a grid-search over the values of C and σ using 10-fold cross
validation. The different pairs of (C, σ) values are tried in the range of (C =
2−5, 2−3, ..., 215;σ = 2−25, 2−13, ..., 23) and the values with the best 10-fold cross
validation accuracy are picked for the final model building (see Section 5).

5 Results

We experimentally obtained the 10-fold cross validation accuracy and hold-out
test set accuracy using four algorithms including k-NN, Random Forest, linear
SVM, and SVM with RBF Kernel. Based on the results obtained on the hold-out
test set for all the four experiments, it can be concluded that the Random Forest
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model performs better than the rest of the algorithms (see Table 4, 5, 6 and 7).
Random Forest gives the most stable and consistently highest accuracy on the
hold-out test set. Moreover, the Random Forest has the additional capability to
assign a relevance score to the variables (genes), hence, we have selected random
forest for the determination of the genes playing the most important role in the
development of the infection.

Table 4. Results on 64 infected subjects data at 0 and nearest to 48 hours (Experiment
1).

Sr. No. Algorithm
Model

parameters
Accuracy
10-fold CV

Accuracy
hold-out

1 k-NN k = 23 67.66% 53.57%

2 Random forest
mtry= 109

ntree= 10, 001
75.33% 64.29%

3 Linear SVM C = 0.03125 68.33% 64.29%

4
SVM with
RBF kernel

C = 5
σ = 3.051758× 10−5 73% 64.29%

Table 5. Results on 64 infected subjects data at 0 and nearest to the onset time
(Experiment 2).

Sr. No. Algorithm
Model

parameters
Accuracy
10-fold CV

Accuracy
hold-out

1 k-NN k = 24 67.33% 53.57%

2 Random forest
mtry= 109

ntree= 10, 001
73.33% 82.14%

3 Linear SVM C = 1 75.33% 67.86%

4
SVM with
RBF kernel

C = 128
σ = 1.907349× 10−5 76% 71.43%

Table 6. Results on 104 subjects data at 0 and nearest to 48 hours (Experiment 3).

Sr. No. Algorithm
Model

parameters
Accuracy
10-fold CV

Accuracy
hold-out

1 k-NN k = 3 78.79% 77.78%

2 Random forest
mtry= 109

ntree= 10, 001
81.99% 80%

3 Linear SVM C = 1 77.39% 80%

4
SVM with
RBF kernel

C = 3
σ = 3.051758× 10−5 82.83% 77.78%

When the 10-fold cross-validation accuracy is considered, none of the algo-
rithms uniformly outperform the others. The SVM with RBF Kernel is able to
achieve highest 10-fold cross-validation accuracy for the last 3 experiments, how-
ever, the random forest also has similar performance for these last 3 experiments
and is even better for the first experiment.
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Table 7. Results on 104 subjects data at 0 and nearest to onset or average onset time
(Experiment 4).

Sr. No. Algorithm
Model

parameters
Accuracy
10-fold CV

Accuracy
hold-out

1 k-NN k = 4 78.1% 77.78%

2 Random forest
mtry= 109

ntree= 10, 001
84.26% 77.78%

3 Linear SVM C = 1 81.77% 75.56%

4
SVM with
RBF kernel

C = 8
σ = 3.051758× 10−5 85.45% 75.56%

Overall, the results are best when “Onset Time” is considered for all 104
subjects (experiment 4) in comparison to the rest of the experiments. This is
due to the significance of the “Onset Time” which shows that the blood samples
collected at nearest to “Onset Time” is playing important role in discrimination
of the infected samples from non-infected samples.

The highest accuracy obtained at nearest to 48 hours is 82.83% and at nearest
to “Onset Time” is 85.45% which gives a positive sign that the prediction of res-
piratory viral infection at the early stage is possible with considerable accuracy.

6 Biomarker Identification

In this section, we show the top 10 important genes which are experimentally
found to be the most important ones for the progression of respiratory viral
infection and play an important role in the discrimination of infected samples
from non-infected ones (see Table 8).

Table 8. The 10 most important genes with their overall importance score.

Sr. No. Probe IDs Gene symbol Overall importance score

1 3434 at IFIT1 100

2 23586 at DDX58 92.9190292

3 5359 at PLSCR1 77.908644

4 51056 at LAP3 76.5473908

5 9111 at NMI 74.5011703

6 23424 at TDRD7 67.0779044

7 8743 at TNFSF10 60.7319657

8 2633 at GBP1 58.8176266

9 24138 at IFIT5 53.9912712

10 4599 at MX1 53.3913318

Random Forest also calculates the overall importance score for every feature.
We used the caret package which calculates the overall importance score and
scales it in a range from 0 to 100 [10]. We extracted the 109 genes which have
highest overall importance score (100 to 15.97 in descending order) and plotted
them to find the cut-off threshold to come up with 10 most important genes
which contribute significantly in the progression of the disease (see Fig. 5).
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Fig. 5. Plot of overall importance score. 10 genes are above the cut-off threshold which
are significantly the most important ones.

Moreover, we compared top 109 genes selected using random forest at nearest
to 48 hours with top 109 genes selected at nearest to onset time and we found
that these top 10 genes shown in Fig. 5 are common in both categories which
shows that these top 10 genes are significantly important at both the early
timestamps, i.e., nearest to 48 hours and nearest to onset time.

The Five-number summary of gene expression of input data for the identified
top 10 genes at different timestamps can be seen in the form of boxplots shown
in Fig. 6. The boxplots of the top 10 genes at timestamp 0, 48 and “Onset
Time” support our findings. First, the boxplots support our claim that the top
10 genes reported by us are differentially expressed genes and contributing in
progression of respiratory viral infection as their median value of gene expression
at 0 hours and at “Onset Time” has a significant difference. Second, the boxplots
also support the importance of genes, for example, gene IFIT1 has the highest
importance score which can be seen in boxplot in terms of the highest difference
in median gene expression values. Third, these plots also support our finding
that the “Onset Time” is a better choice for learning the predictive models.

7 Discussion

We have identified 10 top genes from a set of 12,023 genes. To understand
the mechanism associated with these genes we performed Gene Set Enrichment
Analysis (GSEA) of these genes [19]. To further understand the association of
retrieved disease mechanisms we performed Transcription Factor (TF) analy-
sis [21]. During TF analysis we integrated TRANSFAC [24], BioGPS [26] and
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Fig. 6. Boxplots of the identified top 10 genes at 0 hours, 48 hours and “Onset Time”.
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JASPER database [16] and ran GSEA. The GSEA yielded the 441 associations
against ten input genes. To understand the process associated with retrieved
TFs and ten seed genes we performed functional annotation considering neigh-
bouring genes [Table 9] and later without considering neighbouring genes [Table
10].

Table 9. Functional annotation and Disease enrichment analysis (DEA) with neigh-
bour genes using Gene Set Enrichment Analysis (GSEA).

Gene
Symbol

p-value
Geneset
Friends

Total
Friends

GO Annotation

IFIT1 1.32× 10−18 10 721
Interferon-induced protein

with tetratricopeptide repeats 1

DDX58 4.24× 10−17 10 1020
DEAD(Asp-Glu-Ala-Asp)

box polypeptide 58

IFIT5 1.89× 10−15 10 1491
Interferon-induced protein

with tetratricopeptide repeats 5

GBP1 1.89× 10−15 10 1491
Guanylate binding protein 1,

interferon-inducible

MX1 1.52× 10−14 10 1837
Myxovirus (influenza virus) resistance 1,
interferon-inducible protein p78 (mouse)

PLSCR1 1.99× 10−14 10 1837
Phospholipid
scramblase 1

TNFSF10 3.99× 10−13 10 2547
Tumour necrosis factor (ligand)

superfamily, member 10

LAP3 5.67× 10−11 9 2505
Leucine

aminopeptidase 3

NMI 9.54× 10−11 9 2655
N-myc

(and STAT) interactor

TDRD7 7.75× 10−10 8 2018
Tumour

domain containing 7

Here Geneset friends column explain how many genes contributed from the
seed gene to establish the outcome. The MX1 gene has been known for its rele-
vance to the intervention in the influenza virus infectious disease and it is known
as the antiviral protein 1 [1, 22]. IFIT1, IFIT5 have interferon-induced protein
with tetratricopeptide repeats 1 as annotation which indicates it’s role in viral
pathogenesis [6]. DDX58 is cytoplasmic viral RNA receptor, that is also known
as DDX58 (DExD/H-box helicase 58). GBP1 induces infectious virus production
in primary human macrophages [9,27]. PLSCR1 are responsible for Hepatitis B
virus replication with in-vitro and in-vivo both. LAP3 has already been pre-
dicted as principal viral response factor for all samples in H3N2 [3]. NMI has
been reported as viral infection with Respiratory Syncytial Virus (RSV) infec-
tion and neuromuscular impairment (NMI) [23]. TDRD7 is known as interferons
antiviral action and responsible for paramyxovirus replication [20]

To explore the effect of captured mechanism further we conducted a DEA
using GSEA outcomes and as a result, most of the genes appear to be aligned
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against response to virus (83), immune response (467), innate immune response
(105). GSEA, a measure to define the inhibition of a gene alongside its nearest
neighbours and known interactions not only helped to understand the virology
aspect of ten seed genes but also associated factors and genes. As we can observe
from Table 10 most of the genes are involved in antiviral infection and their
extended neighbours are against the response to the virus or process related to
immune the body against the virus attack.

Table 10. Functional annotation without neighbour genes using Gene Set Enrichment
Analysis (GSEA).

GO Biological Process p-value GSEA Enriched GENES

GO:0009615:
response to virus (83)

e−48.85
IRF7; PLSCR1; MX2; MX1; EIF2AK2;
STAT1; BST2; IFIH1; TRIM22; IRF9;
IFI35; DDX58; ISG15; RSAD2

GO:0006955:
immune response (467)

e−42.41

IFITM2; TAP1; IFITM3; IFI35; TNFSF10;
GBP1; IFI6; CXCL10; IFI44L; OASL; OAS3;
TRIM22; OAS2; PSMB9; OAS1; CXCL11;
DDX58; IFIH1; SP110; PLSCR1

GO:0045087:
innate immune response (105)

e−11.45 IFIH1; DDX58; MX1; MX2; SP110

This provides a strong domain associated validation for these genes where
core gene works as antiviral, and neighbour and interaction genes are immune
and protective markers. This etiological discriminant prediction model and iden-
tified predictors is a potentially useful tool in epidemiological studies and viral
infections.

8 Future work

We will be extending this work to establish identified genes for pathogen related
infection. Findings could have diagnostic and prognostic implications by inform-
ing patient management and treatment choice at the point of care. Thus, further
our efforts in this direction will establish the power of non-linear mathematical
models to analyze complex biomedical datasets and highlight key pathways in-
volved in pathogen-specific immune responses. The implemented classification
methodology will support future database updates or largely integrated knowl-
edge graphs to include new viral infection database to establish diagnostically
strong biomarker with phenotype data, which will enrich the classifiers. The
sets of identified genes can potentiate the improvement of the selectivity of non-
invasive infection diagnostics. Currently, any type of viral data with labelled
samples (i.e. case/control) can be used to discover small sets of biomarkers. In
future we will also be focusing on the following aspects:

– Predictive performance assessed with an n-fold cross-validation scheme and
simulation of a validation with unseen samples of multiple databases having
integrated knowledge graphs (i.e. external validation).
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– Biomarker extraction and inference of the predictive model by incorporating
time series analysis performed on the data that includes all the different
time-points.

– Permutation test to statistically validate the predictive performance of the
model. On this point, currently we have already achieved the following:

• The variable importance represents the contribution of each biomarker
at an early stage within the predictive model.

• The variable direction indicates how the change in values affect the over-
all prediction (e.g. probability of the disease to occur).

9 Conclusions

In this work, we aim to use a hybrid approach that harnesses the power of both
ML and database integration to provide new insights and improve understand-
ing of viral etiology, particularly related to the mechanism of viral diseases. To
achieve this we conducted four different experiments to assess the capability of
ML algorithms to predict the state of disease at the early stage by analyzing gene
expression data. We establish that the prediction at an early stage is possible
with considerable accuracy, 82.83% accuracy at nearest to 48 hours and 85.45%
accuracy at nearest to onset time using 10-fold cross-validation, and accuracies
of 80% and 82.14%, respectively on the hold-out test set. We got highest 10-fold
cross-validation accuracy when all 104 subjects data are collected at 0 and near-
est to onset or average onset time. This shows that for these kinds of studies if
“Onset Time” is considered for learning the model then one can achieve con-
siderably high accuracy in discrimination of infected from non-infected samples,
however, it is observed that the accuracy on the hold-out test set is sometimes
lower and sometimes higher than the 10-fold cross-validation accuracy, which
means that the data has high variability and further analysis to capture this
variability can improve the accuracy of prediction. The experiments indicate
that the k-NN and linear SVM are not an ideal choice for these kinds of high di-
mensional datasets. By considering the fact that the Random Forest gives more
stable and highest accuracy on unseen data (hold-out test set) for all the 4 ex-
periments and due to its capability to assign importance score to variables, it is
reasonable to choose Random Forest rather than the others. Moreover, we have
identified top 10 most important genes which are having the maximum contri-
bution in the progression of the respiratory viral infection at the early stage.
The diagnosis and prevention of the respiratory viral infection at the early stage
by targeting these genes can potentially improve the results than targeting the
genes affected at the later stage of the infection.
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