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Abstract. Visualization of Gene Expression (GE) is a challenging task
since the number of genes and their associations are difficult to predict in
various set of biological studies. GE could be used to understand tissue-
gene-protein relationships. Currently, Heatmaps is the standard visual-
ization technique to depict GE data. However, Heatmaps only covers
the cluster of highly dense regions. It does not provide the Interaction,
Functional Annotation and pooled understanding from higher to lower
expression. In the present paper, we propose a graph-based technique -
based on color encoding from higher to lower expression map, along with
the functional annotation. This visualization technique is highly interac-
tive (HeatMaps are mainly static maps). The visualization system here
explains the association between overlapping genes with and without tis-
sues types. Traditional visualization techniques (viz-Heatmaps) generally
explain each of the association in distinct maps. For example, overlap-
ping genes and their interactions, based on co-expression and expression
cut off are three distinct Heatmaps. We demonstrate the usability us-
ing ortholog study of GE and visualize GE using GExpressionMap. We
further compare and benchmark our approach with the existing visual-
ization techniques. It also reduces the task to cluster the expressed gene
networks further to understand the over/under expression. Further, it
provides the interaction based on co-expression network which itself cre-
ates co-expression clusters. GExpressionMap provides a unique graph-
based visualization for GE data with their functional annotation and
associated interaction among the DEGs(Differentially Expressed Genes).

Introduction

RNA seq and microarray data generate DEGs with their associated expression
value as RPKM counts. GE is primarily responsible for gene silencing and en-
hancing control by transcription initiation [5]. These genes need to be investi-
gated to dissect the role of GE in cancer, through the networks based on their
involvement. Understanding of genes could be achieved by the integration of GE
and network data to prioritize disease-associated genes [25]. GE data is crucial
to visualize, since the overall data is pattern driven where over/under expres-
sion drives the function of a gene. These functions could be understood provided
associated functional annotation and GO terms could be displayed along with
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visualization. Secondly, most of the methods use Heatmaps to visualize GE, as
a static representation where each information, such as Gene-Gene association,
regulation and co-expression requires distinct visualization. To obtain interfer-
ence for concluding the overall process of a gene, manual interpretation of the
gene using distinct visualization becomes essential. Further, this retrieved knowl-
edge required to be annotated for understanding the mechanism and associated
cell cycle processes. We have demonstrated a graph-based method to visualize
GE data. Graph-based methods have an added advantage over Heatmaps based
visualization regarding GE, such as the basics of Heatmaps visualization is to
define the similarity among the group of genes to build a co-expression net-
work [16]. This tool also kept the basic requirement intact by keeping the color
annotation based expression visualization as in the case of Heatmaps. Here re-
duction from darker to lighter color representation explains the higher to lower
expression of the genes. Along with this it also generates intermediate interac-
tion graph among transcripts or genes. The key advantage of such a mechanism
is to understand the gene association, cluster with a maximum number of dis-
ease association and identify the group of critical transcripts associated with the
disease or normal condition. One potential advantage could be in knockdown
studies where genes group based on expression level could be used for experi-
mental validation to understand the oncogenic properties of the gene. Another
advantage could be understood by the use-case presented in this paper where we
have demonstrated the relationship between the expression data of human and
mouse.

Background

Visualization of GE is key due to its functional relevance in cancer research
and other diseases. However, the development of visualization and providing
a scientific source such as a mathematical model, functional annotation and
associated biological process will make the task of data analytics more struc-
tured. The functional annotation will also help to map down other associated
biological events like gene fusion, CNV, Methylation to develop scientifically.
Since the GExpressionMap approach is mathematical model driven, integration
of these concepts to build data-driven discovery will be less cumbersome. The
current approaches in GE are Principle Component Analysis (PCA) plot and
Box plot in general. As demonstrated in Figure 1 which explains the pros and
cons with three existing methods for GE visualization. The first method is the
PCA method where principal component analysis has to be performed on the
list of genes or transcripts. The outcome is usually being presented using M-A
plot [28]. Such plots are primarily useful when working on a limited set of genes,
as this approach radically decreases the density of visualization. Further, this
visualization is chunky and adding a reference line could be challenging. When
working on the RNA seq data where each experiment returns approximately
50000 transcripts and in this case reduction of dimensionality becomes essen-
tial. Sometimes due to biased analysis, there are many more “variables” than
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“observations. Along with this, these types of diagrams are generated either by
using ’R’ or ’MATLAB’ which works great with smaller data sets. However,
with high throughput data, it creates several issues. Further, the key to any
biological outcome its functional annotation and understanding the pattern of
the outcome. It is tough to accommodate functional annotation with PCA plot
since data points are not so well distinguished. PCA plot is mostly static and
supports limited clustering. However, it does not support the functional cluster-
ing of genes and is tough to identify sharp data points. Sometimes it is tough
to distinguish two distinct clusters if they have a higher amount of overlaps. As
demonstrated in Figure 1, another method associated with GE visualization is
Heatmaps based visualization. Heatmaps are called as intensity plot or matrix
plot, which includes dendrogram and extended Heatmaps as well [1]. As Figure 1
explains, it is a tabular view of a collection of data points, where rows represent
genes, columns represent array experiments, and cells represent the measured
intensity value or ratio. In GE visualization, Heatmaps provide multi-hue color
maps for up- and down-regulation in combination with clustering to place similar
profiles next to each other. Other extended versions of these Heatmaps are den-
drogram, hierarchical clustering of genes or experiments, often combined with
Heatmaps to provide more information about the cluster structures. The criti-
cal issue with Heatmaps for GE are, though it provides cluster structure, it is
still far from the functional grouping of these clusters due to lack of integrated
annotation and GO terms. It also has issues, such as it only supports qualita-
tive interpretation possible due to color coding. It grows vertically with every
additional profile and grows horizontally with every additional sample. These
problems make the knowledge mining difficult for large-scale data sets, such as
RNA-seq GE data. Crucial third method to visualize GE data, as shown in Fig-
ure 1, is a one-dimensional box plot approach. Essentially this method is used
for a summary of distribution, comparison of several distributions and to see
the result of normalization in differentially expressed genes. This visualization
is vital to understand the sample-wise or gene-wise distribution. However, due
to its 1-D nature, it does not support the multiple data types represented on a
single plot. For example, for a single queried gene box can plot the cut-off for the
expression. However, it will not provide the entities associated with it, such as
overexpressed, underexpressed and not expressed genes. This type of plots are
mainly static and as explained in Figure 1 any overlay-ed information, in this
case, mutated genes for EGFR. The data points are rich even for the normalized
data that it becomes tough to identify the participating entities with each gene.

Related Work

There are rich set of tools and web applications to visualize GE data and its bi-
ological and functional associations. The most related tools for GE visualization
are M-A plot, Heatmaps, Scree Plot, Box Plot, Scatter Plot, Wiggle Plot, Pro-
file Plot (also known as Parallel Coordinate Plot), VA Enhanced Profile Plots
and Dendrogram. In general, Mayday[6], ClustVis[18], GENE-E 1, MISO[14] are

1 http://www.broadinstitute.org/cancer/software/GENE-E/index.html
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PCA-Plot Heatmap Boxplot

Interpretation:
colour represents density around a 
point and sample distribution
How is this better?
Layered Points to understanding 
sample
What problem(s) remain?
One Point-One Gene/ Probe

Interpretation:
Darker=Overexpressed genes, Light= Under 
expressed
How is this better?
Provides better visualization when study is 
case-Control driven , e.g. Normal Vs Cancer
What problem(s) remain?
Clusters are complex and gives an overview 
then actual contributing genes

Interpretation:
User driven visualization and region
driven by selected objects(genes)
How is this better?
visualize –Change in expression by 
defined cut off value
What problem(s) remain?
Identification behaviour of key targets 

Fig. 1. Motivational Scenario to develop GExpressionMap for breast cancer data from
E-GEOD-29431

some of the most commonly used tools which covers these plots for GE. Bi-
Cluster[8] represents GE data by the hybrid approach of Heatmaps and Parallel
Coordinate Plots. These plots are interactive, and GE annotations have been for-
malized with proper color annotations. However, this tool works on Heatmaps,
and with massive data points, clusters generated by this tool can only help to
infer the functionally enriched region. However, the role of each participating
member and their co-expressed expressions cannot be determined. The unavail-
ability of functional annotation and GO terms make it difficult to understand
the biological processed involved with each cluster thus the pattern of the ex-
pression. INVEX [26] is again a Heatmaps based tool which deals with GE and
metabolomics datasets generated from clinical samples and associated metadata,
such as phenotype, donor, gender, etc. It is a web-based tool where data size has
certain limitations. However, it has built-in support for gene/metabolite anno-
tation along with Heatmaps builder. The Heatmaps builder primarily works on
’R’ APIs. Though these tools have great potential due to inbuilt functional an-
notation, lack of clustering, interactive selection of gene entities and support
for large-scale datasets provides further room for improvement. GeneXPress[21]
has been developed to improve the functional annotation to reduce the task of
post-processing after the obtained list of DEGs. It also contains an integrated
clustering algorithm to explore the various binding sites from DEGs. Multi-view
representation, which includes graph based interaction map for selected genes
and Heatmaps based visualization with functional annotation, makes it a most
relevant tool for GE based biological discovery with an integrated motif discov-
ery environment. However, a single source of functional annotation raises the
requirement for linked functional annotation. Again the graph visualization is
limited to selected genes wherein Heatmaps identification of exact data point is
a cumbersome task. GEPAT[24] is also a gene expression visualization tool de-
veloped over the Heatmaps and focused on visualization of pathway associated
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gene expression data. Integrated GO terms enrichment environment makes the
tool unique regarding understanding the mechanism of differentially expressed
genes. However, the functional annotation is mostly performed manually to have
the exact mapping of each transcript involved with a certain loop of biological
processed. Integrated cluster maker provides substantial support to the idea of
GExpressionMap. ArrayCluster [29] is a tool developed from GE datasets, keep-
ing in mind to resolve analytical and statistical problems associated with data.
The ideal co-expression based clustering method and functional annotation of
each cluster make it unique and provide a ground for GExpressionMap to in-
clude co-expression based clustering of DEGs. However, it has limited support
to microarray data and makes it difficult to apply on larger gene sets generated
from RNA Seq. Also, it is a Heatmaps based plotting, which makes data point
selection difficult. J-Express 2 is again GE data analysis tool which contains
almost every type of plot. The inclusion of various plots makes visual analytics
from this tool robust. However, most of the plots generated from J-Express are
static, thus lacks the key feature to understand the in-depth analysis of each tool.
Integrated Gene set enrichment analysis (GSEA), Chromosome (DNA sequence)
mapping and analysis, Gaussian kernels and Cross-data class prediction are some
of the critical features, which makes this tool unique among others. Tang et al.
presented [23] is one of the most earlier interactive visualization tool developed
on the concept of ROI (Region of Interest) accommodated using scattered map.
Visualization is widely supported with mathematical modeling of GE data for
limited data points. This tool provides a strong foundation for GExpressionMap
where we have mathematically modeled gene expression for dense and large data
sets of transcripts.

Mathematical Model of GE and Visualization

It is essential to know the spectrum of visualization and behavior of visualizing
events. Mathematical modeling of both provides a stable visualization system.
Few attempts have been made earlier to model gene expression. Here we have
modeled GE based on our requirement where we have identified the up-regulated,
down-regulated and not expressed states for the genes and we have used it to
identify meaningful data points in the cluster have an accurate co-expression net-
work generated from GE data. GE data are a linear transcription model follows
a system of differential equations [3]. The basic understanding of the terms are
as follows; Gene Expression: Combination of genes code for proteins that are
essential for the development and functioning of a cell or organism. Transcript-
based co-expression network : Set of genes, proteins, small molecules, and
their mutual regulatory interactions.
The modeling could be understood by Fig. 2. As per the figure, the system could
be realized as

∂r

∂t
= f(p)− V r, ∂p

∂t
= Lr − Up (1)

2 http://jexpress.bioinfo.no/site/JexpressMain.php
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where V, U = relative degradation, L = Translation, r = concentration of
gene, p = concentration of protein.

To define the over, under and no expression, and stability of cluster based
on interaction network, let’s assume that, at given time point t, if the concen-
tration of mRNA is x1 and concentration of protein is p = x2, then this can be
generalized as a continuous function.

xi(t) ∈ R≥0 (2)

ẋi(t) = fi(x), 1 ≤ i ≤ n
Say x1 = mRNA concentration,

p = x2 = protein concentration

(3)

ẋ1 = κ1f(x2)− γ1x1, ẋ2 = κ2x1 − γ2x2
κ1, κ2 > 0 production rate, γ1, γ2 > 0 degradation rate

(4)

f(x2) = f(p) =
θn

θn + xn2

f(p) =
θn

θn + pn

if θ > 0 explains genes are under expressed

else genes are over expressed

(5)

Assume ẋ = 0

ẋ1 = 0 : x1 =
κ1
γ1
f(x2) =

κ1
γ1
f(p)

same as

ẋ2 = 0 : x1 =
γ2
κ2
x2

x1 =
γ2
κ2
p

for x1 and x2 > 0, genes will not show expression

(6)

Another key extension of this model will be to understand the interaction model
from these under/over/non expressed genes. Lets assume that these interaction
networks are continuous function and cluster building follows rate law, then
Equation 1 can be generalized as;

xi = fi(x), where 1 ≤ i ≤ n
wherefi(x) = rate law for each interaction

(7)

If translation happens with this gene then each cluster will follow a model to
take part in post translational modification(PTM)s, that can be understood by,

pi = fi(p), where 1 ≤ i ≤ n (8)



Title Suppressed Due to Excessive Length 7

Fig. 2. Mathematical model to understand GE and gene interection based clustering.

∂r

∂t
= fi(p)− V r

Equaltion for rate of

change in interection for mRNA

(9)

∂[fi(p)]

∂t
= Lr − Ufi(p)∫

Lr.dt = fi(p)−
∫
Ufi(p).dt

(10)

This equation explains the relevance of GE based clustering and the effect of
rate of change in expression. All the data points within this range of equation
will have an easy to manageable knowledge mining. This will help to define the
boundary and interpretation module from visualization.

Cancer Decision Networks: Integration, Model and Query
Processing

Visualization is working as a presentation model with a structured and dis-
tributed model underneath for processing, filtering and querying the data. In
cancer genomics, if one gene regulated by more than one events, such as gene
expression, CNV, and methylation, it is unlikely that retrieved regulation oc-
curred by chance. To realize the aspect of the multi-genomic event-based model,
we have constructed a knowledge graph called ”Decision Networks(DN).”
The DN works on two-layer integration, where at first layer, we identify the
linking parameters, such as Gene Symbol, CG IDs and Chr: Start-End. The
detailed linked scenario is shown in Figure 2 of [12]. However, at this level in-
tegration behaved more like an enriched dataset. Instead of building a single
integrated graph, we built a virtually integrated Knowledge graph for DNs. We
achieved this by federated SPARQL query as mentioned in Listing 7 of our earlier
work [12]. The second layer of integration is essential regarding defining the rules
to extract the biological insights from multi-omics integrated DNs. Some of the
conventional rules of filtering genes without significance to make visualization
clinically actionable are as follows.
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Fig. 3. Data input output model for Visualization

(i) Gene Expression and Methylation are reciprocal to each other. Which means
if the gene is hyper-methylated it should be down-regulated.

(ii) A gene cannot be up- and down-regulated at the same time.

(iii) Functional annotation follows the central dogma of disease evolution where
expression is captured first and then mutation, CNV, and Methylation, re-
spectively.

(iv) Cancer is a heterogeneous disease, and any change in one genomic event is
not sufficient to understand the mechanism.

(v) Beta-value in Methylation data where negative value represents Hypo- and
a positive value represents Hyper- Methylation, respectively.

(vi) The CNV, the germline DNA for a given gene, can only be risk associated
it falls outside the range of USCS defined gene length.

(vii) CNV for each cancer type changes based on two parameters, namely cancer
are rare frequency and potentially confer high penetrance called as odds
ratios.

(viii) Any pathways represented by the change in CNV, GE and Methylation will
always be given a priority in studies and thus in visualization.

After filtering the data based on rules (i - viii), as mentioned above, the systems
pre-process the data as shown in Figure 3. Figure 3 shows the key instances of
input data, such as Gene Symbol, Chr, start, end. The Decision Network layer we
perform the integration and then visualize the filtered data. The result queried,
and the filtered result can also be exported for further analysis. The use case
was taken from E-GEOD-29431 - Identifying breast cancer biomarkers 3. We
have used the same genes for visualization and in Figure 1. Figure 1 shows the
data types used in the study on visualization with various techniques. Whereas
Figure 8 shows the solution on same gene as Figure 1.

3 https://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-29431/samples/
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Functional Annotation

Integrated functional annotation is one of the key advantages associated with
visual mining of GE data sets. We have used a semantic web approach to link
distinct data sets from COSMIC, TCGA and ICGC. In comparison with existing
data linking methods, our approach has linked data sets based on the semantics
within the data. For example, we have extracted CNV, GE, Mutation and DNA
Methylation data from TCGA, COSMIC, and ICGC and linked them to have
enriched semantics, which in turn leads to having an improved coverage of the
genome for each genomics profile. Each of these genomic signatures has its dedi-
cated SPARQL endpoints. These SPARQL endpoints will be iteratively enriched
with other associated similar data types to have maximum coverage of genome
for each genomic profile. In the present paper, all differentially expressed genes
from use case annotated using GE data from our Linked functional annotation
platform [10].

Table 1. Genomics Data Statistics

No. Data Triples Subjects Predicates Objects Size (MB)

1 COSMIC GE 1184971624 148121454 18 148240680 10000

2 COSMIC GM 83275111 3620658 23 9004153 1400

3 COSMIC CNV 8633104 863332 10 921690 122

4 COSMIC Methylation 170300300 8292057 22 603135 2800

5 TCGA-OV 81188714 10974200 15 4774584 3774

6 TCGA-CESC 3763470 627652 43 481227 49557

7 TCGA-UCEC 553271744 19233824 91 68370614 84687

8 TCGA-UCS 1120873 183602 36 188970 10018

9 KEGG 50197150 6533307 141 6792319 4302

10 REACTOME 12471494 2465218 237 4218300 957

11 GOA 28058541 5950074 36 6575678 5858

12 ICGC 577 M - - - 39000

13 CNVD 1,552,025 194,590 9 512,307 71

Table 1 shows the overall statistics of RDFization of COSMIC, TCGA and
CNVD data and external (RDF) datasets used: rows 1-4 represent the number
of triples and its size for COSMIC gene expression, gene mutation, CNV and
Methylation data sets, respectively. Rows 5-8 represent the number of triples,
and it is size for TCGA-OV, TCGA-CESC, TCGA-UCEC and TCGA-UCS
data, respectively. The RDFization statistics for CNVD data are shown in row
13. Rows 9-12 represents the statistics of external datasets (available in RDF
format), namely KEGG, REACTOME, GOA, and ICGC. To query data, we
have used an adapted version of SAFE [15], a federation engine to query data
from multiple endpoints in a policy-driven approach which may be a key element
from the user while the user is selecting his/her hypothesis from visualization
and unique functional annotation module based on the distributed concept in
genomics.
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Fig. 4. The GExpressionMap main view where the left side represents the lower and
right side represents the higher gene expression

GExpressionMap

GExpressionMap has been built over a robust mathematical model of gene ex-
pression which defines that GE is linear and having a graph-based visualization
for linear model provides the better visual representation of the events. In ad-
dition to visualization, we have built linked data based decision networks where
we have contributed TCGA-OV, TCGA-UCS, TCGA-UCSC and TCGA-CESC
(Methylation, CNV, Gene expression, and Complete Mutation) data along with
COSMIC (GE, CNV, GM, and Methylation) and CNVD extending our earlier
work [11–13]. These datasets will provide a platform for link identification and
federation and addition to Linked Open Data.

GExpressionMap has been divided into four modules to identify critical chal-
lenges associated with GE data sets in biology. The first mode called as Ex-
pression mode talk about the conditional expression and track the changes
in the property of transcripts or genes based on the changes in the expression
level and identify the role on non-expressed genes in various cell cycle processes.
Another mode called knockdown mode identifies the changes in various clus-
ters representing a group or a biological process. This mode will also help to
understand the effect from a knockdown to knockout. Knockdown studies are
essential to solve various biological problems, such as a natural mechanism for
silencing gene expression, specific inhibition of the function of any chosen target
gene to understand the role in cancer and other diseases. Tracking these changes
in the graph-based on motif building or destructing and cluster changes pro-
vides a visual impact to this biological discovery [19]. Another critical challenge
while dealing with the group of genes or transcripts is to understand the pattern
or bias of the network/data to understand the mechanism of the experiment.
GExpressionMap provides an integrated annotated genes with their functional
annotation and further cluster them based on their RPKM values means their
expression pattern. By this way, the experimenter will conclude that how reli-
able is a cleave from a cluster what functional processes they are involved in
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and what can be cumulative effect reported from validated and patient data
sources based on the linked functional annotation and GO annotations. This di-
mension of work is called Annotation, Clustering and GO processes mode.
It is always crucial to find the strongest and weakest cluster based on matrices,
such as the number of overexpressed genes connected with a cluster, number
of underexpressed genes connected with a cluster or participation of individual
gene in a cluster. On the other hand, if critical genes, such as TP53, EGFR,
BRCA, and other biomarker is associated with large no of network or clusters
can drive the progression in the disease like cancer. However, the number of over
and under-expressed genes with this network will explain the functioning. This
is how Interaction and co-expression mode have revealed the crux of the
network. The aerial view of the expression map is depicted in Figure 4. Details
of each mode explained in following subsections.

Expression Mode

Expression mode overlays the GE data either from microarray or RNA seq based
on RPKM count from lower to the higher expression. As explained in Figure 4 red
color bar demonstrated the gene with lower expression value whereas the white
expression bar explains the value with higher expression value. The list of bubbles
is the genes are either highly or lowest expressed based on their expression value.
The expression scale in the bottom is the log scale which explains the range of
expression considered maximum to minimum as RPKM/FPKM values. As it
can be observed from Figure 6 that bottom expression line annotated as D is
being used in such a way to have two-way side slider pointer. The major use
of this approach is to identify the most significant genes since the expression
value from RNA seq has a broader range mostly. The Value as mentioned in
A explains about two types of values annotated as OE -Overexpressed and UE-
Under-expressed. The value is constantly displayed as per the change from slider
annotated on Figure 6 as B. The example of this has been shown as C where
the for value 49848 expressed of PSMD9 having been displayed. The overall
impact of this mode would be to retain the ease of expression scale as in the
case of Heatmaps, however covering the broad spectrum of the gene with added
functionalities.

Knockdown Mode

Knock-down studies play a key role in biological experiments to understand the
overall impact of a gene or mRNA. For example in cancer networks where if we
consider one GE network contains the expression interaction from normal and
adjacent normal called as normal sample expression network. Another network
could be the expression network obtained from cancer tissues. Now to understand
the behavior is important to understand the knockdown effect of most affected
genes. As GExpressionMap also provides bottleneck genes based on cluster bind-
ing and a number of the associated cluster with that gene, the strength of the
cluster. If a single gene has different expression level in both normal and cancer
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Fig. 5. A bottleneck view to understanding the effect of expression change and associ-
ations

network, it would be key to understand the impact of losing that gene and then
understand the overall pattern of the network. Especially cancer network can
get distorted after losing these bottleneck gene or highly expressed genes. A key
observation such as the presence of certain genes with higher cluster binding in
normal network however absence in cancer network can lead to key outcomes
in cancer studies. Figure 5 provides a snippet of one such case. As explained in
the figure knockdown of PSMD9 will affect two genes from higher expression
pole and two genes from a lower expression pole. Further, the cluster associated
with it and having lower expression will have loss of connectivity and will cause
insatiability in the network. This is a typical example of cancer progression and
loss of connectivity in the cancer networks.

Interaction and co-expression mode

Dynamic changing property from normal to cancer networks reveals common
system-level properties and molecular properties of prognostic genes across can-
cer types [27]. However current methods to generate co-expression network are
basically for microarray data since they have been defined based on probe ids.
This types of the network will not be able to cope-up to identify the changes
in the broader level in co-expression networks [9]. This paper builds the co-
expression network based on raw RPKM/FPKM values, or it can also accom-
modate expression value as log2 fold change values [17]. One of the key impacts
of building a co-expression network using these expression counts is to bring
similar associations or cell functions together after clustering. Usually in cancer
networks, one of the major issues is to identify missing links and predict the
fill-ins for the missing links. Since the RPKM values are experiment specific be-
comes essential to track the change and loss of expression for same tissue across
different experiments. Building a co-expression network by this approach will au-
tomatically define the causality of the network if changes are abrupt. If a certain
transcript is not at all expressed or lost the connectivity due to some treat-
ment in any of the control would be easy to track. Apart from this differentially
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Fig. 6. GExpressionMap leveling and interacting partner association to visually mine
functional annotations.

expressed genes could be easily extended to differentially expressed pathways
based on co-expression network. This could be one of the potential outcomes.
Figure 6 provides a glimpse of a co-expression network. One of the key points in
this visualization is that it highlights the high expression network and keeps the
less expressed network in light color annotations. Figure 6 clearly indicates that
cluster A is highly expressed than B,C,D among these co-expressed networks.

Annotation, Clustering and GO processes mode
This mode of GExpressionMap involves the key features such as retrieval of
GO:ID for a bottleneck gene identified based on clustering. To reduce the com-
plexity in the visualization GExpressionMap have placed annotation based on
user request. As depicted in Figure 6 where C indicates the bottleneck since
holding three expression cluster. Now if the user is interested in functional anno-
tation of this gene, they need to retrieve GO biological process and as mentioned
in 4 as G clicking on this would provide a to an interface to obtain annotations
as displayed in Figure 7. As we click on G of Figure 6 it takes to the a of Figure
7 and user need to enter the bottleneck gene obtained. Then interface queried
a flat file for annotations [4]. This will display Go Ids and other Ids associated
with the input query gene represented as b in Figure 7. Once we have obtained
the GO Ids we have used gene ontology search engine obtained from 4 and em-
bedded with our system. Then we query for obtained GO Id and outcome of
some can be represented as d and e in Figure 7. This way we have contributed
a web application with visualization to annotated the gene with associated ex-
pression visualization and identification of bottleneck gene or protein. Another
key is to identification and understanding of clusters. One of such cluster based
on our use case having been shown in Figure 8. The details of these clusters and
associated methods will be discussed in the Result section.

Case Study, Results and Discussion

To demonstrate the feasibility of the proposed approach in biology, we have
demonstrated a use-case from Monaco, Gianni, et al. [20]. This paper rep-
resents the comparative GE data between human and mouse. We have used

4 https://github.com/zweiein/pyGOsite
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a

b

c

d

id:GO:0000165

name:MAPK cascade

namespace:biological_process

def:"An intracellular protein kinase cascade containing at least a 

MAPK, a MAPKK and a MAP3K. The cascade can also contain 

two additional tiers: the upstream MAP4K and the downstream 

MAP Kinase-activated kinase (MAPKAPK). The kinases in 

each tier phosphorylate and activate the kinases in the 

downstream tier to transmit a signal within a cell." [ GOC:bf, 

GOC:mtg_signaling_feb11, PMID:20811974, PMID:9561267, ]

synonym:"ERK/MAPK cascade"narrow[]

synonym:"MAP kinase cascade"exact[]

synonym:"MAP kinase kinase kinase cascade"exact[]

synonym:"MAPK signal transduction"exact[]

synonym:"MAPK signaling"related[]

synonym:"MAPK signalling"related[]

synonym:"MAPKKK cascade"exact[]

synonym:"MAPKKK cascade during sporulation"narrow[]

synonym:"mitogen-activated protein kinase cascade"exact[]

is_a:GO:0023014 ! signal transduction by protein 

phosphorylation

is_a:GO:0035556 ! intracellular signal transduction

e

Fig. 7. The Go ontology and functional annotation for the human-mouse model use
case.

GExpressedMap to visualize this data and draw some of the key conclusions
using visual representation. Based on the steps mentioned earlier, we have de-
veloped an expression map where Figure 8 represents one of the key clusters
from this expression map. As we can observe from the diagram, human genes
A2M have a close expression concerning mouse genes such as asAanat, Aadac,
Amap, Abat, Abca1, and Aars. Here, the key observation is that this cluster also
holds other clusters and becomes bottleneck genes in human-mouse expression
network. On the other hand, the only A2M human gene is underexpressed, and
has a strong correlation with underexpressed genes in mouse (such as Aanat,
Aadac, Amap, Abat, Abca1 ) as well as an overexpressed gene in mouse (such
as Aars). One of the key outcomes of this cluster could be to identify de-
tectable expression differences between species or individuals. The expression
could logically divided into selectively neutral (or nearly neutral) differences
and those underlying observable phenotypic [7]. To dig in further to identify
the fact we have extracted the GO ids for each of the genes involved in the
cluster. Where A2M highly associated with GO terms such as GO:0003824,
GO:0004867, GO:0010951 and GO:0070062. Where, GO:0003824 is responsible
for catalytic activity and has close correlation with GO:0003674, GO:0004867
associated with serine-type endopeptidase inhibitor activity and has close asso-
ciation with GO:0004866:endopeptidase inhibitor activity, whereas GO:0010951
and GO:0070062 are associated with negative regulation of endopeptidase activ-
ity and extracellular exosome respectively. To establish an association between
human-mouse cluster, we have used the MGD [2] database, as the current ver-
sion of GExpressionMap only supports homospaiens. The annotations for Aanat,
Aadac, Amap, Abat, Abca1 are a protein-coding gene which has the relation of
A2M. These genes Aanat(cellular response to cAMP circadian rhythm, mela-
tonin biosynthetic process, N-terminal protein amino acid acetylation), Aadac
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Fig. 8. Cluster representing diseasome for human-mouse

(carboxylic ester hydrolase activity, deacetylase activity, endoplasmic reticulum,
endoplasmic reticulum membrane), Amap, Abat (aging, behavioral response
to cocaine, catalytic activity, copulation), Abca1 (anion transmembrane trans-
porter activity, apolipoprotein A-I binding, apolipoprotein A-I-mediated signal-
ing pathway, apolipoprotein A-I receptor activity). Where the only highly ex-
pressed gene in mouse Aars(alanine-tRNA ligase activity, cellular response to
unfolded protein, skin development, tRNA modification) having relation with
A2M. Based on the biological process, this cluster represents Membranoprolif-
erative Glomerulonephritis, X-Linked Tangier Disease; TGD and A2M are also
involved with X-Linked Tangier Disease. In Summary, the visual identification
of cluster, mapping of GE for each associated gene with the cluster, identifica-
tion of expression level and functional annotation provides a key solution to how
orthologs data with GExpressionMap have helped to mine the gene association
to predict possible disease based on expression data. The proposed case study
and results have just provided initial insight into a hidden treasure that can dig
down visually using GExpressionMap. The expression extended for time series
co-expression data where expression change happens on a certain time interval.
For instance effect of ZIKA virus [22] where expression of top genes visualized
for 12, 48 and 96 hours.

Conclusions

GExpressionMap is a key mechanism developed for visualization of gene expres-
sion data which is highly user-friendly, interactive, modular and visually infor-
mative. Integrated functional annotation, clustering, and co-expression network
based on scientifically selected color annotations make it highly informative,
usable and associative towards biological discovery based on genes expression.
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