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Abstract. Alzheimer’s disease (AD) pathophysiology is still imperfectly under-
stood and current paradigms have not led to curative outcome. Omics technolo-
gies offer great promises for improving our understanding and generating new 
hypotheses. However, integration and interpretation of such data pose major 
challenges, calling for adequate knowledge models. AlzPathway is a disease map 
that gives a detailed and broad account of AD pathophysiology. However, 
AlzPathway lacks formalism, which can lead to ambiguity and misinterpretation. 
Ontologies are an adequate framework to overcome this limitation, through their 
axiomatic definitions and logical reasoning properties. We introduce the AD Map 
Ontology (ADMO), an ontological upper model based on systems biology terms. 
We then propose to convert AlzPathway into an ontology and to integrate it into 
ADMO. We demonstrate that it allows one to deal with issues related to redun-
dancy, naming, consistency, process classification and pathway relationships. 
Further, it opens opportunities to expand the model using elements from other 
resources, such as generic pathways from Reactome or clinical features contained 
in the ADO (AD Ontology). A version of ADMO is freely available at http://bi-
oportal.bioontology.org/ontologies/ADMO. 
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1 Introduction 

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder of the brain that 
was first described in 1906. The intense activity of AD research constantly generates 
new data and knowledge on AD-specific molecular and cellular processes (a Medline 
search for “Alzheimer disease” results in over 135,000 articles, as of June 30, 2018). 
However, the complexity of AD pathophysiology is still imperfectly understood [1]. 
These 110 years of efforts have essentially resulted in one dominant paradigm to un-
derline the causes of AD: the amyloid cascade [2]. Therapeutics targeting this pathway 
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failed to lead to curative outcome for humans, strongly suggesting the need for alterna-
tive hypotheses about AD etiology. 

Since the turn of the century, omics technologies lead to a more comprehensive char-
acterization of biological systems and diseases. The production of omics data in AD 
research opens promising perspectives to identify alternatives to the amyloid cascade 
paradigm. The current challenge is thus to integrate these data in an appropriate way, 
in order to propose new hypotheses and models about AD pathophysiology. 

Systems medicine disease maps (DM) provide curated and integrated knowledge on 
pathophysiology of disorders at the molecular and phenotypic levels, which is adapted 
to the diversity of omics measurements [3]–[5]. Based on a systemic approach, they 
describe all biological physical entities (i.e. gene, mRNA, protein, metabolite) in their 
different states (e.g. phosphorylated protein, molecular complex, degraded molecule) 
and the interactions between them [6]. Their relations are represented as biochemical 
reactions organized in pathways, which encode the transition between participants’ 
states as processes. AlzPathway is a DM developed for AD [3]. It describes 1,347 bio-
logical physical entities, 129 phenotypes, 1,070 biochemical reactions and 26 pathways. 
The information contained in DM is stored in syntactic formats developed for systems 
biology: the Systems Biology Graphical Notation (SBGN) [7] and the Systems Biology 
Markup Language (SBML) [8]. While syntactic formats are able to index information, 
they are not expressive enough to define explicit relationships and formal descriptions, 
leading to possible ambiguities and misinterpretations. For AlzPathway, this defect in 
expressiveness results in the lack of formalism and thus of: a) hierarchy and disjunction 
between species (e.g. between “Protein” and  “Truncated Protein” or between “Protein” 
and “RNA”, respectively), b) formal definition of entities (such as phenotypes), c) for-
mal relationships between reactions and pathways (that are missing or are managed as 
cell compartments), d) uniformity of entities’ naming (e.g. complexes that are labelled 
by their molecular components or by a common name) and e) consistency between 
reactions and their participants (e.g. translation of genes instead of transcripts). 

Compared to syntactic formats, the Web Ontology Language (OWL), a semantic 
format used in ontologies, has higher expressiveness [9] and was designed to support 
integration. It is thus a good candidate to overcome the previous limitations. 

An ontology is an explicit specification of a set of concepts and their relationships 
represented in a knowledge graph in semantic format. Ontologies provide a formal 
naming and definition of the types (i.e. the classes), properties, and interrelationships 
between entities that exist for a particular domain. Moreover, knowledge and data man-
aged by an ontology benefit from its logical semantics and axiomatic properties (e.g. 
subsumption, disjunction, cardinality), which supports automatic control of con-
sistency, automated enrichment of knowledge properties and complex query abilities 
[10]. 

The Alzheimer’s Disease Ontology (ADO) [11] is the first ontology specific to the 
AD domain. ADO organizes information describing clinical, experimental and molec-
ular features in OWL format. However, the description of the biological systems of 
ADO is less specific than that of AlzPathway. 

Considering that 1) semantic formats can embed syntactic information, 2) DM pro-
vide an integrative view adapted to omics data management and 3) an ontological 
model is appropriate to finely manage data, the conversion of AlzPathway into a formal 
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ontology would bring several assets, including an efficient integration of biomedical 
data for AD research, interconnection with ADO and an increased satisfiability of the 
resources. 

We propose the Alzheimer Disease Map Ontology (ADMO), an ontological upper 
model able to embed the AlzPathway DM. Section 2 is devoted to the description of 
the ADMO model. In Section 3, we describe a method to convert AlzPathway in OWL 
and how ADMO can manage the converted AlzPathway and automatically enhance its 
formalism. Section 4 presents elements of discussion and perspectives. 

2 Ontological upper model: Alzheimer Disease Map Ontology 

The initial definition of an ontological model aims to design a knowledge graph that 
will drive its content. In a formal ontology, the relationships are not only links between 
classes, but also constraints that are inherited by all their descendants (subclasses). 
Thus, the choices of axioms that support high level classes and their properties are key 
elements for the utility of the model. 

The Systems Biology Ontology (SBO) [12] is a terminology that provides a set of 
classes commonly used to index information in SBML format. These classes concep-
tualize biological entities at an adequate level of genericity and accuracy that supports 
a wide coverage with few classes and enough discrimination. We selected a set of 54 
SBO terms from “process” or “material entity” for reactions and molecules as a first 
resource of subclasses of processes and participants, respectively. The modified Edin-
burg Pathway Notation (mEPN) [13] is another syntactic format based on systems ap-
proach. Its components provide a refined set of molecular states that complete the SBO 
class set. Following class selection from SBO and mEPN, we designed a class hierarchy 
between them. We systematically added disjointness constraints between the generic 
sibling subclasses of participants in order to ensure that process participants belong to 
only one set (e.g. a gene cannot be a protein and reciprocally). We did not apply the 
same rule to the processes’ subclasses as a reaction may refer to different processes 
(e.g. a transfer is an addition and a removal). 

Properties consistent with a systems approach (i.e. part_of, component_of, compo-
nent_process_of, has_participant, has_input, has_output, has_active_participant, de-
rives_from and their respective inverse properties) were defined from the upper-level 
Relation Ontology (RO) [14]. Then, we formally defined our set of classes with these 
properties and cardinalities to link processes and participants with description logic in 
SHIQ expressivity (e.g. a transcription has at least one gene as input and has at least 
one mRNA as output; a protein complex formation has at least two proteins as input 
and has at least one protein complex as output). 

The design of the ADMO upper ontological model based on SBO, mEPN, RO and 
personal addition resulted in 140 classes (42 processes’ subclasses and 83 participants 
subclasses) and 11 properties formally defined by 188 logical axioms in description 
logic (Fig. 1). This model is based on a simple pattern as our knowledge graph involves 
only three types of properties: 1) the is_a (subclass_of) standard property, 2) the 
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has_part standard property and its sub-properties has_component and has_compo-
nent_process and 3) the has_participant property and its sub-properties has_input, 
has_output and has_active_participant. 

 
Fig. 1. Alzheimer Disease Map Ontology model design. Classes were extracted from the Sys-
tems Biology Ontology (SBO) and the modified Edinburg Pathway Notation (mEPN) into Pro-
tégé. Classes were hierarchized as subclasses of process (A) or participant (B). Using properties 
from the Relation Ontology (RO), classes were formally defined in description logic, as illus-
trated in the case of transcription (C) and protein complex formation (D) processes. 

3 AlzPathway conversion and integration into ADMO 

AlzPathway elements were extracted and stored in a structured table using home-made 
Python scripts. In this table, each biological entity was indexed by one of the high-level 
participants’ subclasses of ADMO and all processes were in correspondence with their 
participants. The table also contains class annotations such as the AlzPathway identifier 
(ID), and IDs from other knowledge bases such as UniProt [15] for participants and 
KEGG [16] for processes. The table is structured to integrate component information 
for multiplex entities (e.g. protein complex) and location information for the process 
(e.g. cell type or cell part). The table was then manually curated as described below. 

In AlzPathway, native and modified proteins (e.g. phosphorylated or activated) may 
have the same label and same Id. In order to specify these different states, we added a 
suffix to modified protein labels (e.g. “_P” or “_a” for phosphorylated or activated, 
respectively). 

In AlzPathway, phenotypes are participants. But several of them are named with a 
process name, pathway label or molecule type (e.g. microglial activation, apoptosis or 
cytokines, respectively). In order to deal with these ambiguities, 26 phenotypes were 
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reclassified as molecules (e.g. cytokine) or cellular components (e.g. membrane) and 
14 names that referred to processes or pathways were changed into processes’ partici-
pant names (e.g. apoptosis became apoptotic signal). In addition, 5 phenotypes that 
were named with a relevant pathway name (e.g. apoptosis) were added to the initial set 
of the 26 AlzPathway’s pathways. 

AlzPathway only describes a subset of genes, mRNA and proteins. As omics tech-
nology can capture data at the genome, transcriptome or proteome levels, we added 
missing information in order to complete some correspondences between genes and 
gene products. This resulted in the addition of 406 genes, 415 mRNA and 194 proteins 
and protein complex states. 

Then, using the ontology editor Protégé, the content of the structured table was im-
ported into ADMO using the Protégé Cellfie plugin. Entities information were inte-
grated as subclasses of ADMO participants classes. During the integration, we also 
added a new property has_template (sub-property of derives_from) to formally link a 
gene to its related mRNA and a mRNA to its related protein. Reactions were integrated 
as independent subclasses of the “process” class. Then, automated reasoning was used 
to classify them as subclasses of the ADMO upper model process classes depending on 
their formal definition (see Fig. 2a*). The 1,065 inferred subclass_of axioms corre-
sponding to this refined classification of processes were then edited. During their im-
port, process classes from AlzPathway were formally linked to their respective location 
through the RO property: occurs_in. 

While AlzPathway does not formally link pathways and their related biochemical 
reactions, pathways were manually imported. For each pathway, a class “reaction in-
volved in pathway x” was created and defined both as “reaction that has_participant 
the molecules of interest in x” and “component_process_of pathway x”. For example, 
the class “reaction involved in WNT signaling pathway” has_participant “WNT” and 
is a component_process_of “WNT signaling pathway”. Then, using automated reason-
ing, all reactions having participants involved in pathway x were classified as sub-
classes of “component_process_of pathway x” classes and were linked to the pathway 
with the component_process_of property by subsumption. For example, “SFRP-WNT 
association” is automatically classified as subclass of “reaction involved in WNT sig-
naling pathway” (see Fig. 2b*) and inherits from its properties component_ process_of 
“WNT signaling pathway” (see Fig. 2b**). The 355 inferred subclass_of axioms cor-
responding to reactions involved in one of the 22 pathways were then edited.  
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Fig. 2. Example of automated reasoning on Protégé. Asserted axioms are in uncoloured lines 
and inferred axioms are highlighted in yellow. Following automated reasoning, SFRP-WNT het-
erodimer association is classified as subclass of “protein complex formation” (a*) and of “reac-
tion involved in WNT signaling pathway” classes (b*), thus it inherits of the component_pro-
cess_of “WNT_signaling pathway” property (b**).  

As a result, ADMO embeds AlzPathway in a consistent network containing 2,132 
classes (2,175 disjoint participants, including 88 phenotypes or signals, 1,038 disjoint 
processes and 22 pathways) in relation with 10,964 logical axioms before and 12,373 
logical axioms after automated reasoning, respectively. Specific efforts were dedicated 
to the design of classes hierarchy and formal definition with description logic axioms, 
leading to explicit relations between processes and biological entities. These axioms 
were inherited by classes imported from AlzPathway, resulting in the formal and pre-
cise description of the elements of AD pathophysiology. Thus, following automated 
reasoning, only 21 out of 643 AlzPathway’s reactions generically classified as “transi-
tion” or “unknown transition” remained unaffected to a specific process of the ADMO 
upper model, such as metabolic reaction, phosphorylation or activation. Moreover, mis-
affected processes were consistently affected to a specific process (e.g. translation in-
stead of transcription). In addition, 355 reactions were formally defined as subprocess 
of pathways of interest. 

The conversion of AlzPathway also benefits from the ADMO simple pattern of re-
lationships (Fig. 3) in which new properties were added: the derives_from property that 
links a modified protein to its native form, the has_template property that links a native 
gene product to its mRNA and gene, and the occurs_in property that links a process to 
its cellular location. 
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Fig. 3. Alzheimer Disease Map Ontology (ADMO) pattern (A) and application to AlzPath-
way (B). AlzPathway classes (B; illustrated for the SFRP-WNT association process ant its par-
ticipants) are now subclasses of ADMO classes (A). Each class of AlzPathway may be instanti-
ated by the corresponding entities as individuals. Then, entities can be related to different objects 
in an RDF schema such as patients and experiments, or more specifically to values such as SNP 
for genes, relative expression for mRNA, and concentration for proteins. 

4 Discussion 

We proposed the ADMO ontological model in order to manage the conversion and 
integration of AlzPathway in OWL format. By converting AlzPathway into an OWL 
ontology, we increased its formalism. All entities are now formally defined and inter-
connected within a consistent network. While AlzPathway contained several ambigui-
ties, our efforts on formalism at a semantic level for phenotypes and description logic 
in ADMO classes allowed us to solve inconsistencies. Moreover, the combination of 
SBO and mEPN provided a more precise specification of processes and biological en-
tity states within the system compared to SBML or SBGN, which was beneficial for 
the specification of AlzPathway reactions following its import into ADMO. 

Unlike DM, ontologies are not adapted for graphical visualization but present a 
higher flexibility to integrate new elements in the knowledge graph, as we did by adding 
865 genes and mRNA. Moreover, during the conversion step, AlzPathway’s internal 
IDs were retained as class annotations, allowing interoperability between the initial and 
converted AlzPathway. Taking advantage of the knowledge graph and its semantic 
links, the ID information are retrievable from a derived molecule to its native form 
following the derives_from or has_component properties that link each of these classes. 

Furthermore, the increased formalism requires to assert a participant as subclass of 
the most representative class and thus, clarifies the status of the entities. In several 
standard bioinformatics knowledge resources (e.g. UnitProt [15], KEGG[16]), a same 
ID refers to a gene or a protein and in fine to a set of information, such as gene, inter-
action, regulation and post translation modification (PTM), which are thus not specifi-
cally discriminated. However, current omics technologies are able to generate data fo-
cused on specific elements of the systems (gene mutation, relative gene expression, 
protein concentration…). This is underexploited by standard resources. Based on DM 
approaches, we provided an ontology that a) represents the complexity of a system such 
as AD pathophysiology and b) is designed to specifically integrate each type of omics 
data as an instance of the explicit corresponding class. 

The next possible step is to instantiate the model with biomedical omics data. To this 
end, the Resource Description Framework (RDF) semantic format is appropriate as it 
was specifically designed for representing a knowledge graph as a set of triples con-
taining directed edges (semantic predicates). Different RDF schemas were already de-
veloped in the field of molecular biology (BioPax [17]) or more specifically for AD 
biomedical research (neuroRDF [18]). The Global Data Sharing in Alzheimer Disease 
Research initiative [19] is also a relevant resource to help find appropriate predicates 
to enrich RDF schemas and refine subject information (age, gender, clinical visit…). 
Depending on the need of a given study, users may design RDF schemas with their own 
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predicates of interest. Then, this RDF schema can be integrated in our ontology by 
adding data as instances of its corresponding specific classes (Fig. 3B). Therefore, in-
stantiation opens perspectives for complex querying, both richer and more precise than 
indexing. 

DM are based on systems biology approaches, allowing one to take each part of the 
system into consideration. Our ontology goes one step further by formally defining the 
different elements of the system and linking them with the biochemical reaction and 
pathway levels. Here, we relied on AlzPathway, but additional resources could be used, 
such as Reactome [4] which provides a wide range of generic curated human biochem-
ical reactions and pathways. Our ADMO upper ontological model provides an interest-
ing framework to embed generic resources and thus harmonize AlzPathway and those 
resources. By converting and integrating AlzPathway in OWL format, the resulting on-
tology is ready to be connected with ADO and its clinical knowledge description. Ow-
ing to its specificity on biochemical reactions, an interoperable and formal version of 
AlzPathway should be a relevant complement to ADO. This offers new avenues for 
increasing the scale of representation of AD pathophysiology in our framework. In the 
same way, the genericity of processes and participants described in the ADMO upper 
model opens the perspective to harmonize specific DM from different neurodegenera-
tive disorders such as the Parkinson’s disease map [5] and others. 
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