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Abstract. Scientific information communicated in scholarly literature
remains largely inaccessible to machines. The global scientific knowledge
base is little more than a collection of (digital) documents. The main
reason is in the fact that the document is the principal form of communi-
cation and—since underlying data, software and other materials mostly
remain unpublished—the fact that the scholarly article is, essentially,
the only form used to communicate scientific information. Based on a
use case in life sciences, we argue that virtual research environments and
semantic technologies are transforming the capability of research infras-
tructures to systematically acquire and curate machine readable scientific
information communicated in scholarly literature.
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1 Introduction

The critique is not new and the quest remains: Despite advances in informa-
tion technology and systems, the format of the scholarly article has largely re-
mained unchanged [16, 17, 32]. The wealth of scientific information conveyed by
the steadily increasing number of published articles [43, 9, 27] continues to be con-
fined to the document, seemingly inseparable from the medium as hieroglyphs
carved in stone.

Document centric scholarly communication has its challenges. Most obvi-
ously, machine processing of the information communicated in scholarly articles
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is very limited. While words can be indexed and searched, the semantics of num-
bers, text, figures, symbols, etc. are hardly accessible to computers and modern
exploration, retrieval, question answering and visualization thus not applicable.
Such limited machine support hinders the efficient processing of literature since
relevant information is “buried” in documents and finding information relies
on sifting through documents. Given the growing scientific output, processing
literature ties up increasing resources.

To be sure, important advances have been made. The interlinking of arti-
cles with related entities is a notable recent development. Aided by interop-
erable information infrastructures—such as DataCite, Crossref, literature and
data publishers—articles are increasingly linked to related persistently identified
datasets, audio/video, samples, instruments, software, people, institutions. The
Scholix framework for scholarly link exchange [10] is a project that focuses on
interoperability of information about the links between scholarly literature and
data. Related advancements can be noticed also in systems that are well-known
to researchers. Taking the link between articles and citations as an example,
ResearchGate now shows citations “in context” by pointing readers directly to
the relevant position in articles. Other related projects include Research Graph
[3], RMap [25], and Research Objects [8]. The resulting graphs enable new forms
of information publication, search, navigation and discovery. However, it is not
scientific information communicated in scholarly literature that these graphs
capture but information (i.e., metadata) about the digital objects used in com-
munication and their relationships to contextual entities.

Another notable development is in technologies and vocabularies for ma-
chine readable representations of scientific information authors communicate in
scholarly literature. Indeed, representing scientific knowledge claims has been
explored for at least a decade. With the HypER approach, de Waard et al. [18]
proposed to extract knowledge from articles “to allow the construction of a sys-
tem where a specific scientific claim is connected, through trails of meaningful
relationships, to experimental evidence.” Garćıa-Castro et al. [22] proposed an
extension to the Annotation Ontology [15] that enables the modelling of concepts
and relations of scholarly articles, such as ‘claim’, ‘hypothesis‘ or ‘contradicts’
and ‘proves’. Nanopublications [31, 23] is a concept and model designed to rep-
resent, in machine readable form, scientific statements. The OBO Foundry [34]
publishes ontologies that include numerous relevant concepts e.g., for the ma-
chine readable representation of statistical hypothesis tests or average values. As
a result, it is now possible to describe scientific information authors communicate
in scholarly literature in machine readable form and thus have infrastructures
curate, process, and publish such information as distinct information objects.

A third important advancement is in virtual research environments (VREs)
[2, 12] (also known as virtual laboratories and science gateways) that enable the
execution of data analysis on interoperable infrastructure. Since VREs can be
extended in functionality and engineered to meet advanced requirements, the
p-value resulting in a statistical hypothesis test is no longer a mere number (as
is generally the case in local computational environments) but can be an infor-
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mation object relating the p-value to the kind of statistical test performed, the
involved continuous variables and values, and even data provenance in labora-
tory experiments. In other words a machine readable description of the performed
statistical hypothesis test.

Based on a use case in life sciences, we argue that key technologies needed for
research infrastructures to acquire and curate more of the scientific information
communicated in scholarly literature as machine readable interlinked yet distinct
information objects are in place. While certainly challenging, technological inte-
gration seems to be on the horizon. Here, we depict such an integration in the
context of an open project4 recently initiated by the TIB Leibniz Information
Centre for Science and Technology which aims to develop infrastructure that
acquires, curates, and processes scientific information communicated in schol-
arly literature [5]. In addition to technical considerations elucidated on the use
case, we discuss possible pathways through which machine readable scientific
information may be systematically acquired by the prospective infrastructure.
We also present recent developments and some near-future plans of the project.

2 Use Case

We aim to reproduce and represent, in machine readable form, the statistical
hypothesis test supporting the scientific statement that “IRE binding activity
was significantly reduced in failing hearts” as published by Haddad et al. [24, p.
364] in their article entitled Iron-regulatory proteins secure iron availability in
cardiomyocytes to prevent heart failure recently published by European Heart
Journal.

Iron-responsive elements (IREs) are conserved nucleotide sequences located
in uncoded regions of iron-related transcripts (mRNA). These elements can be
bound by iron-regulatory proteins (IRPs) in order to regulate the iron home-
ostasis in cells, which is essential for cell survival since iron is a key co-factor
for many enzymes involved in numerous biological processes, ranging from DNA
synthesis to energy metabolism. In iron-depleted cells, IRP activity increases in
order to secure the iron availability [26]. According to Haddad et al., patients
with heart failure (a condition whereby the heart is unable to pump sufficiently)
show reduced IRP activity and iron content in heart cells, leading to impaired
heart function.

The statement by Haddad et al. is based on data reported in the plot shown in
Figure 1B, specifically for non-failing hearts (NF) and patients with failing heart
(F). The data reported in the plot are themselves sourced in the electrophoretic
mobility shift assay shown as image in Figure 1B. The quantification of the image
is done using ImageJ [33], an image processing and analysis software.

Given the data, Haddad et al. use Prism (GraphPad Software) to perform a
Student’s t-test and find the reported statistical difference (P < 0.001) in mean
IRE binding activity between the two groups (NF and F). Hence the author’s

4 Open Research Knowledge Graph: http://orkg.org (Accessed: October 16, 2018)
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Fig. 1. Overview of the main aspects of the conventional and proposed approaches.

statement that “IRE binding activity was significantly reduced in failing hearts.”
Prism is also used to create the plot shown in Figure 1B.

3 Architecture

Figure 1 contrasts the main aspects of the conventional approach just described
with those of the proposed one. Akin to the conventional approach, the pro-
posed one adopts a system architecture with technical and social subsystems,
and sociotechnical subsystem integration. However, subsystems differ in details.

In the proposed approach, the technical subsystem consists of a digital infras-
tructure that operates a semantically enhanced Virtual Research Environment
(VRE). While VREs typically support numerous features e.g., cataloguing and
communication, of primary concern here is a component for data analysis. It
is this VRE component that we suggest to semantically enhance. The technical
subsystem also consists of a component capable of storing and retrieving infor-
mation objects. The social subsystem consists of individual researchers, mem-
bers of research communities. Among other activities, researchers are the agents
that perform data analysis. The proposed approach also relies on sociotechnical
integration. Indeed, researchers are required to move data analysis from local
computing environments into the VRE. This is to ensure that the data derived
in analysis conform with the representational requirements of the system.

Data analysis is the key activity that evolves uninterpreted data to scientific
information, ultimately published in scholarly literature. We borrow the notion
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Fig. 2. From uninterpreted data to scientific information in the research lifecycle.

of data interpretation from the unified definitional model of data, information,
and knowledge proposed by Aamodt and Nyg̊ard [1]. According to the model,
data are uninterpreted symbols with “no meaning for the system concerned”
and are input to an interpretation process. Information is interpreted data i.e.,
data with meaning and the output from data interpretation. Interpretation oc-
curs “within a real-world context and for a particular purpose.” Aamodt and
Nyg̊ard’s model also defines knowledge as learned information. As the output of
learning processes, “knowledge is information incorporated in an agent’s reason-
ing resources.”

Floridi [21] further elaborates the definition of information. Building on a
widely adopted General Definition of Information (GDI), he develops a definition
of semantic information. GDI defines information in terms of “data + meaning.”
Floridi proposes a more precise formulation that borrows the term infon [7, 19],
a discrete item of information. The infon σ is an instance of information, under-
stood as semantic content, if and only if σ consists of n data, n ≥ 1; the data
are well formed; and the well-formed data are meaningful (i.e., of significance to
some person, situation or machine). Of specific interest here is factual semantic
content i.e., semantic content about a situation or fact that can be qualified
as either true or false. Only semantic content that is true is informative. Thus,
Floridi suggests that p qualifies as factual semantic information if and only if
p is well-formed, meaningful, and truthful data. Furthermore, Floridi proposes
a classification of types of data, of which two are of importance here. Primary
data are the principal data stored, for example in a database while derivative
data are data that “can be extracted from some data whenever the latter are
used as indirect sources in search of patterns, clues or inferential evidence about
things other than those directly addressed by the data themselves.”
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Listing 1. Python implementation of the statistical hypothesis test.

import numpy as np

import pandas as pd

from scipy.stats import ttest_ind

labels = [’non -failing heart (NF)’, ’failing heart (F)’]

data = [(99, 52), (96, 40), (100, 38), (105, 18),

(np.nan , 11), (np.nan , 5), (np.nan , 42),

(np.nan , 55), (np.nan , 53), (np.nan , 39),

(np.nan , 42), (np.nan , 50)]

df = pd.DataFrame.from_records(data , columns=labels)

tt = ttest_ind(df[’non -failing heart (NF)’],

df[’failing heart (F)’],

equal_var=False , nan_policy=’omit ’)

tt.pvalue

Figure 2 places these concepts in the context of the research lifecycle. Unin-
terpreted, primary data resulting in observation, experimentation, or simulation
activities enter the research data lifecycle by data acquisition. Primary data may
be processed in activities other than data interpretation (e.g., aggregation or in-
terpolation). In such activities, derived data remain uninterpreted and without
meaning for the system concerned. It is in data analysis that data are interpreted
and derived data are information, meaningful and—following Floridi—truthful
data for the system concerned. Along research data lifecycles, data may be pro-
cessed and analysed repeatedly resulting in secondary, tertiary, quaternary, etc.
data and, if data are meaningful and truthful for the system concerned primary,
secondary, etc. information.

Factual semantic information is a fundamental unit in scholarly communica-
tion. Figure 2 suggests that information is learned, incorporated in an agent’s
(researcher, primarily) “reasoning resources” (knowledge base). Through learn-
ing processes, in scholarly communication information thus evolves to knowledge,
specifically learned scientific or scholarly information.

Instances of factual semantic information and learned scientific information
communicated in scholarly literature are the objects which the proposed archi-
tecture aims to represent, acquire, curate, and publish for further reuse. Their
representation is machine readable. Critically, not just the data that constitute
information are machine readable: Meaning is machine readable, too. Hence, not
only is the value 0.013 machine readable but so is its meaning as a e.g., p-value.
We now present the implementation of the use case following this architecture
and conceptual framework.
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4 Implementation

We implement the statistical hypothesis test using Jupyter [29] in Python, specif-
ically Jupyter Lab, the next-generation web-based interface for Project Jupyter.
Jupyter Lab acts as VRE component that provides services for data analy-
sis among the range of services typically provided by a full-fledged VRE e.g.,
D4Science VREs [11].

The complete Jupyter notebook is published [38]. We limit the presentation
here to the key elements. Given the experimental data, the statistical hypothesis
test can be easily implemented using SciPy [28]. Listing 1 shows the implemen-
tation in detail. The last line returns the computed p-value i.e., 0.0000000131.
This merely reproduces in Jupyter Lab some of the output researchers obtain
using Prism.

More interesting is the possibility to describe, in machine readable form,
the performed statistical hypothesis test. Since our Jupyter Lab based VRE
component can be extended with novel functionality, we implement a function
that returns a description of the test in RDF (Resource Description Framework)
[30]. Listing 2 displays the core of the description (prefixes are omitted). The nu-
meric p-value is described as the output of a two sample t-test with unequal vari-
ance (STATO 0000304). The test description also specifies iron-responsive element
binding (GO 0030350) as the study design dependent variable (OBI 0000751), a
specified input of the statistical hypothesis test. Omitted here for the sake of
brevity, the description also includes the continuous variables (STATO 0000251)
as specified input. The input data are scalar measurement data (IAO 0000032)
that are part of (BFO 0000051) the continuous variables.

Hence, rather than merely representing the numerical p-value, the approach
pursued here describes the performed statistical hypothesis test in a comprehen-
sive and semantic manner, including meaningfully described test input and out-
put. Furthermore, the resulting description is machine readable. The description
is an instance of machine readable factual semantic information communicated
in scholarly literature.

Given such machine readable descriptions of statistical hypothesis tests e.g.,
the others included in the paper by Haddad et al. and potentially the many
more found in the scientific literature, it is trivial to formulate queries only for
statistically significant (specifically, P < 0.005 or P < 0.001) tests (of a specific
kind) involving a particular dependent variable and continuous variables with at
least N measurement data. The scientific information communicated in schol-
arly literature—here the statement that “IRE binding activity was significantly
reduced in failing hearts,” or more accurately the statistical hypothesis test un-
derlying this statement, with the supporting figures and data in Figure 1B—is
thus not just reported in a form suitable for human experts but also available in
machine readable form for automated processing.

Technically, the machine readable description of the statistical hypothesis
test is a (small) RDF graph, consisting of a set of RDF triples (109 in our
example). Various kinds of databases can be used to persist such triples. The
most obvious kind is one of the many available triple stores. However, we are
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Listing 2. Machine readable description of the performed statistical hypothesis test,
in RDF Turtle syntax. For the sake of brevity, we omit prefixes but include human
readable comments to guide readers through the non-semantic names of OBO Foundry
ontology concepts and relations.

# a two sample t-test with unequal variance

[] a obo:STATO_0000304 ;

# that has specified input

obo:OBI_0000293 [

# a study design dependent variable

a obo:OBI_0000751 ,

# specifically , iron -responsive element binding

obo:GO_0030350

] ;

# and has specified output

obo:OBI_0000299 [

# a p-value

a obo:OBI_0000175 ;

# that has value specification

obo:OBI_0001938 [

# a scalar value specification

a obo:OBI_0001931 ;

# that has specified numeric value

obo:OBI_0001937 1.311125e-08

]

] .

currently experimenting with a more general purpose graph database, specifically
Neo4j (neo4j.com). The primary motivation for this choice is the possibility, in
Neo4j, to attach arbitrary attributes to graph nodes and edges. We plan to make
use of this feature to e.g., timestamp data and support versioning.

Aligned with RDF, at the core of our data model is the statement i.e., a
structure of three elements (subject, predicate, object) whereby the subject is
a resource and the object is either a resource or a literal (predicate is an addi-
tional type). Statements, resources, and predicates are identified by means of an
internal identifier. With RDF data, URIs are thus mapped to internal identifiers
and are, in our data model, the labels of resources or predicates.

A REST API enables interaction with the graph database. Of primary focus
here, the API supports the creation and lookup of resources, predicates and
statements. Given the RDF triples for the machine readable description of the
statistical hypothesis test (Listing 2), we thus implement the storing of triples as
statements. Contrary to conventional triple stores, we first need to resolve URIs
in triple subject, predicate, and object positions to internal identifiers. Hence,
before a statement is stored we perform lookups and create new resources and
a predicate in case the corresponding URIs cannot be found (for more detail,
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see [38]). Given internal identifiers for subject, predicate and resource object we
then store the statement. Literal objects are unidentified values.

5 Discussion

As suggested by Mons and Velterop for their paper [31], also this paper may
appear paradoxical since “it is a paper in classical format that seems to make a
plea for the ending of precisely such textual classical publication.” Except that
this paper is no plea for the ending of classical publication. Rather, we argue that
with relatively minor changes to current research infrastructures we may achieve
the co-existence of classical publication with machine readable representations
of (some of) the information communicated in classical publication.

We suggest that a key element is the prospective (a priori) systematic ac-
quisition of machine readable scientific information communicated in scholarly
literature i.e., acquisition while researchers perform data analysis and develop
the results that build the foundation for the prospective article. This stands in
contrast with the (complementary) approach whereby machine readable scientific
information is extracted retrospectively (a posteriori) from published articles,
principally using text mining, possibly combined with human curation.

As shown with our use case, the prospective approach has the potential to
capture scientific information at the granularity of individual statements or even
numbers reported in tables and figures. We argue that, with current technologies,
such granularity cannot be achieved by the retrospective approach, using text
mining.

However, the prospective approach relies on changes to the research infras-
tructure used for data analysis. The challenges are both technical and social.
The technical infrastructure needs to be advanced so that the output of compu-
tational environments are no longer mere numbers. Rather, numbers need to be
information objects with machine readable serialization that captures meaning.
Furthermore, the technical infrastructure needs to automatically track relations
between entities e.g., to record provenance.

Infrastructure is invisible [35] and this is precisely how the additional func-
tionality delineated here should appear to researchers: invisible. However, some
changes in practice are difficult to avoid. Moving data analysis from local com-
puting environments onto interoperable infrastructure e.g., into VREs that in-
teroperate with data and computing resources, is a major change to how data
analysis is currently performed, by many if not most researchers and especially
those working with little data. Data analysis on local computing environments
(e.g., the researcher’s workstation) is a key reason for the staggering syntac-
tic and semantic heterogeneity of derivative data generated by researchers in
data analysis. In such environments it is hard to harmonize data representa-
tion, introduce novel approaches and promote interoperability. Furthermore, the
infrastructural discontinuity between local computing environments and engi-
neered research infrastructures makes it difficult or impossible for the latter to
monitor workflows and thus track executed activities, retain information about
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the involved primary and derivative data, as well as to systematically acquire
derivative data. Indeed, the download of data from research infrastructures e.g.,
data repositories is “considered harmful” in most cases [4]. Implications in dis-
ciplines with sensitive, personal data such as life sciences need to be considered.

While moving data analysis onto interoperable infrastructure is surely a ma-
jor social challenge for many research groups and communities, the perspective
of performing more of data analysis in well-engineered VREs has great potential
as an approach to start addressing the issues discussed here. Naturally, “big sci-
ence” and “big data” research communities have taken steps into such direction.
For example, with CERN Analysis Preservation [14] the High-Energy Physics
community is systematically preserving research objects (e.g., data, software)
created in analysis. However, the long tail of research with “small data” has
arguably been left behind.

The proposed approach can be discussed from the perspective of the FAIR
principles for scientific data management and stewardship [44]. The content of
Listing 2 is of course data. As they encode scientific information communicated
in scholarly literature, the data in Listing 2 are, however, of a kind different
from observational data (e.g., sensor network sourced), experimental data (e.g.,
assay sourced) or computational data (e.g., simulation sourced). In contrast to
the form in the article by Haddad et al. (in Figure 1B and in the main text
of the article) the data in Listing 2 are clearly more (machine) interoperable.
Indeed, the data meet the three requirements for interoperability suggested by
the FAIR principles. Specifically, in the proposed form the data are more inter-
operable because they “use a formal, accessible, shared, and broadly applicable
language for knowledge representation”; they “use vocabularies that follow FAIR
principles”; and they “include qualified references to other (meta)data.” With
systematic acquisition in research infrastructures, the proposed approach also
supports the findability, accessibility and reusability of scientific information
published in scholarly literature, and hence improves on the other elements of
the FAIR principles.

The reference to concepts e.g., two sample t-test with unequal variance
(STATO 0000304) and their formal semantics by means of global and unambigu-
ous identifiers is a key aspect of the FAIR principles. In the proposed approach,
infrastructure adopts identified concepts of existing ontologies. The semantics
of the resulting data (Listing 2) are thus accessible to machines. This stands
in contrast with the natural language text of the original study in which the
authors did not make use of ontology concepts.

We implement the proposed approach in Python. With the rdflib5 library,
the language has good support for RDF. It is thus straightforward to implement
the proposed features in Python. Jupyter supports numerous languages, includ-
ing R which is another language popular in data science. The effort required
to implement the proposed approach in Jupyter but for another language thus
depends primarily on whether or not there exists a corresponding RDF library.
More flexible approaches may be engineered.

5 https://rdflib.readthedocs.io/ (Accessed: October 16, 2018)
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Listing 2 only shows iron-responsive element binding (GO 0030350) and the p-
value as statistical hypothesis test input and output, respectively. The published
Jupyter notebook [38] also includes the data as specified test input. In principle,
this description can be extended with further attributes. However, such extension
relies on additional vocabulary, likely of a different ontology. For instance, it
may be interesting for applications to explicitly capture data summaries e.g.,
the sample size or the share of NaN values. Such indicators are important in data
and statistical test quality assessment. Furthermore, we may capture additional
medical context (e.g., ICD-11 codes). To be useful, it is essential for descriptions
to adequately capture context. So far, we have given this aspect only limited
attention.

6 Future work

Though some of the foundations for the infrastructure depicted here have been
laid in other disciplinary contexts, specifically the earth and environmental sci-
ences [41, 36, 37, 40, 39, 42], the presented work remains in an embryonic stage.
Most of the work required to make the vision [5, 6, 20] reality surely lays ahead.
We present here a few avenues for future work.

The application of the approaches originally developed in use cases in earth
and environmental sciences to life sciences is important and we are committed
to build on the results reported here and develop a compelling use case together
with Hannover Medical School as a research infrastructure in life sciences. Such
collaboration is essential to determine the requirements for a viable infrastruc-
ture.

There exist numerous pathways along which machine readable scientific in-
formation can be acquired. In this paper, our focus is on the prospective pathway
with data analysis. Also in the category of prospective pathways, we will explore
the possibility of acquiring machine readable scientific information at the time
of writing the article. Here, it is possible to link existing information objects
created e.g., during data analysis with the article. We will explore collaboration
with projects such as Dokieli [13] and other document authoring systems.

The retrospective pathways form a further category. They assume one or
more written articles, extract scientific information from them, and represent
information in machine readable form. In addition to text mining articles, it is
interesting to explore the acquisition of machine readable scientific information
at the time of article submission. This could be achieved in collaboration with
submission systems, such as EasyChair. In addition to metadata about the ar-
ticle, such systems increasingly capture other information e.g., ORCID iDs and
funding data. While it is of course untenable to expect a complete “semantifi-
cation” of the article by the researcher at this point, it is arguably possible to
present researchers with a form that captures the key aspects of the research
contribution. Text mining could support researchers with suggestions.

As an open project, TIB encourages active stakeholder participation. The
project’s workshop series is a key instrument to this effect. We invite domain
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scientists to contribute requirements, use cases and domain expertise; repre-
sentatives of related projects such as FREYA, OpenAIRE, Research Graph to
explore synergies among infrastructures; representatives of the publishing sector
(articles, data and other artefacts) for their related work and possible future
integrations.

7 Conclusion

For a use case in life sciences, we have demonstrated how research infrastruc-
tures can systematically acquire machine readable scientific information commu-
nicated in scholarly literature. We argue that this possibility is enabled by the
technological integration of VREs (in particular components for data analysis)
and semantic technologies. While technical challenges do exist, we argue that
the greater challenges are social, specifically the required changes in research
practices. Indeed, data analysis currently performed on local computing envi-
ronments needs to move into VREs. Such environments can be engineered to
include novel functionality that enables the systematic acquisition of scientific
information so that information is also represented in machine readable form
using technologies that not only represent data but also their meanings.

Acknowledgements. We thank the TIB Leibniz Information Centre for Sci-
ence and Technology for supporting this project and our colleagues and the
participants of the project’s workshop series for their contributions.
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A. Virtanen, K. Lehtinen, A. Laaksonen, and M. Kolehmainen. Representing sit-
uational knowledge acquired from sensor data for atmospheric phenomena. Envi-
ronmental Modelling & Software, 58:27–47, 2014.

40. M. Stocker, J. Nikander, H. Huitu, M. Jalli, M. Koistinen, M. Rönkkö, and
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