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Abstract. The exponential increase of scientific publications in the bio-medical 

field challenges access to scientific information, which primarily is encoded by 

semantic relationships between medical entities, such as active ingredients, dis-

eases, or genes. Neural language models, such as Word2Vec, offer new ways of 

automatically learning semantically meaningful entity relationships even from 

large text corpora. They offer high scalability and deliver better accuracy than 

comparable approaches. Still, first the models have to be tuned by testing differ-

ent training parameters. Arguably, the most critical parameter is the number of 

training dimensions for the neural network training and testing individually dif-

ferent numbers of dimensions is time-consuming. It usually takes hours or even 

days per training iteration on large corpora. In this paper we show a more efficient 

way to determine the optimal number of dimensions concerning quality measures 

such as precision/recall. We show that the quality of results gained using simpler 

and easier to compute scaling approaches like MDS or PCA correlates strongly 

with the expected quality when using the same number of Word2Vec training 

dimensions. This has even more impact if after initial Word2Vec training only a 

limited number of entities and their respective relations are of interest. 

Keywords: information extraction, neural language models, scaling ap-

proaches. 

1 Introduction 

The current exponential growth of scientific publications in the medical field requires 

innovative methods to structure the information space for important medical entities, 

such as active ingredients, diseases, genes, and their relationships to each other. For 

instance, a term-based search for a common disease such as diabetes in the medical 

digital library PubMed leads to a search result of over 600,000 publications. Here the 

automated extraction of high-quality relationships between entities contained in medi-

cal literature would provide a useful tool to facilitate an exploration of large datasets. 

Moreover, such an extraction could serve as a basis for numerous innovative medical 

applications such as Drug Repurposing [3, 7], the discovery of drug-drug interactions 

mailto:balke%7d@ifis.cs.tu-bs.de


2 

[4], the creation of biomedical databases [5], and many more. Previous work has rec-

ognized this and proposed several methods to calculate similarities between entities to 

infer their relationships. These include popular approaches such as the computation of 

chemical (sub-)structure similarity based on bit-fingerprints [8] or methods relying on 

entity networks [6]. Recent approaches even try to calculate similarity based on word 

contexts using distributional semantic models (DSMs) [1, 9-11]: here, a similar word 

context points to an implicitly expressed relationship. This property is often transferred 

to entities: two entities in similar linguistic contexts point to an intrinsic relationship 

between these entities and possibly also to similar entity properties. According to 

Baroni et al. [12], DSMs can generally be divided into count-models and predictive 

models. For count-models, first word-context matrices are generated from a text corpus, 

followed by matrix optimization steps such as re-weighting and dimensional scaling 

[12]. In contrast, predictive models (also known as embedding models or neural lan-

guage models) try to predict an expected context based on numerous training examples. 

Studies show that state-of-the-art predictive models, such as Word2Vec, outperform 

count models in performance and scalability, in particular in semantics and analogy 

tasks [12, 13].  

Recently researchers [28-30] have tried to uncover the theoretical principles of 

Word2Vec to reveal what is behind the embedding vectors’ semantics. In particular, 

the work of [30] has demonstrated that a reformulation of the objective of the skip-gram 

negative sampling implementation (SGNS) of Word2Vec leads to a mathematical 

demonstration that SGNS is, in fact, an explicit matrix factorization, where the matrix 

to be factorized is the co-occurrence matrix. However, little is known about the effect 

of scaling algorithms on Word2Vec: do we lose its appealing semantics, or do we filter 

out noise [19]? Among the popular scaling algorithms that exist, which one can pre-

serve the original semantics better? Does it make a difference which scaling algorithm 

is chosen? Answering these questions can help researchers to find the optimal number 

of dimensions of semantic spaces efficiently. In fact, the usually accepted ‘200-400 

dimensions’ chosen when training Word2Vec (see e.g., [13-14]) has yet to spark a more 

in-depth investigation.  

In this paper, we pragmatically investigate these questions to provide first insights 

into the fundamental issues. We focus on a case study for medical entities motivated by 

our findings in previous work. In [1] we investigated the semantic properties of 

Word2Vec for pharmaceutical entity-relations and subsequently utilized them as an al-

ternative access path for the pharmaceutical digital library PubPharm1. In brief, we 

found that semantically meaningful drug-to-drug relations are indeed reflected in the 

high-dimensional word embeddings. Here, we aim to identify the effect of scaling 

methods such as Multidimensional Scaling (MDS) and Principal Component Analysis 

(PCA) on active substance embeddings learned by Word2Vec. 

In the following, we show that scaling has a high correlation with the number of 

Word2Vec training dimensions. This finding means that by using scaling, we can find 

where the optimal number of training dimensions regarding purity, precision, and recall 

is located. Our results can be of interest for all approaches in which Word-Embedding 

                                                           
1  https://www.pubpharm.de/vufind/ 
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training has to be applied to massive amounts of data (Big Data) and thus exploring 

different numbers of dimensions with re-training is not a practical option. 

The paper is organized as follows: Section 2 revisits related work accompanied by 

our extensive investigation of scaling approaches to embedded drug-clusters in section 

3. We close with conclusions in section 4. 

2 Related Work 

Neural Language Model Representation of Words. Semantic embeddings of words in 

vector spaces have sparked interest, especially Word2Vec [13-14] and related methods 

[15-18]. Researchers have demonstrated that words with similar meanings are embed-

ded nearby, and even ‘word arithmetic’ can be convincingly applied. For example, the 

calculated difference in the embedding vector space between ‘Berlin’ and ‘Germany’ 

is similar to the one obtained between ‘Paris’ and ‘France’. Word2Vec representations 

are learned in an unsupervised manner from large corpora and are not explicitly con-

strained to abide by such regularities. In a nutshell, Word2Vec is a technique for build-

ing a neural network that maps words to real number vectors. What is unique about 

these number vectors is that words with similar meaning will map to similar vectors. 

At its core, Word2Vec constructs a log-linear classification network. More specifically, 

in [13-14] researchers proposed two such networks: the Skip-gram and the Continuous 

Bag-of-Words (CBoW). In our experiments we used the Skip-gram architecture, which 

is considered preferable according to the experiments reported by [14].  

Multidimensional Scaling (MDS). Multidimensional Scaling [19] deals with the 

problem of representing a set of 𝑛 objects in a low-dimensional space in which the 

distances respect the distances in the original high-dimensional space. In its classical 

formalization MDS takes as input a dissimilarity matrix between pairs of objects and 

outputs a coordinate matrix whose configuration minimizes a loss function called stress 

or strain [19]. In our experimental setting, given a matrix of the Euclidean distances 

between entities represented by Word2Vec vectors, 𝑀 = [𝑒𝑑𝑖,𝑗] where 𝑒𝑑𝑖,𝑗 is the dis-

tance between the pair of entities𝑖, 𝑗. MDS uses eigenvalue decomposition on the matrix 

𝑀 using double centering [20]. In our experiments we used the Scikit-Learn Python 

implementation [21] with default parameters except for the number of dimensions that 

we exhaustively tested. 

Principal Component Analysis (PCA). Principal Component Analysis is a popular 

data mining technique for dimensionality reduction [27]. Given a set of data points on 

𝑛 dimensions, PCA aims to find a linear subspace of dimension 𝑑 lower than 𝑛 such 

that the data points lie mainly on this linear subspace. In our case we take the matrix 

𝑀𝑒 of Word2Vec vectors where the rows represent medical entities and columns to the 

dimensions of the Word2Vec semantic space. The idea of PCA then is to treat the set 

of tuples in this matrix and find the eigenvectors for 𝑀𝑒𝑀𝑒
𝑇. When you apply this 

transformation to the original data, the axis corresponding to the principal eigenvector 

is the one along which the points are most spread out. In other words, this axis is the 
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one along which the variance of the data is maximized. Thus, the original data is ap-

proximated by data that has many fewer dimensions and that summarizes well the orig-

inal data.  

Orthogonal Procrustes. We use Orthogonal Procrustes [25] – also known as rota-

tional alignment – to evaluate the relative quality of two different scaling approaches. 

The general idea here is to evaluate two scaling techniques without considering any 

specific metric related to the clustering task. Instead it is assessed by measuring 

pointwise differences, which of the two scaling approaches can better approximate the 

original Word2Vec space. Orthogonal Procrustes was used before to align word em-

beddings created at different time periods, i.e., to analyze semantic changes of words 

in diachronic embeddings [23]. 

3 Investigation of Effect of the Dimensionality Reduction 

First, we describe the methodology for generating our ground truth dataset. After this, 

we describe our ground truth evaluation corpus followed by experimental set-up and 

implementation decisions. Then we examine with the help of our ground truth dataset 

whether the number of Word2Vec training dimensions and the number of scaling di-

mensions correlate with purity, precision, recall, and F-Score. We will then perform a 

mathematical analysis between MDS, PCA, and Word2Vec results based on statistical 

t-test and matrix approximation methods. Afterwards we compare the runtime of MDS, 

PCA and the training with different Word2Vec dimensions. Since our current study is 

based on the dataset of our previous work [1], we use almost the same methodology, 

evaluation corpus, implementation, and set-up decisions:   

 

Methodology for building our ground-truth dataset 

After the initial crawling step the following process can be roughly divided into four 

sub-steps:  

1. Preprocessing of crawled documents. After the relevant documents were crawled, 

classical IR-style text pre-processing is needed, i.e., stop-word removal and stem-

ming. The pre-processing helps mainly to reduce vocabulary size, which leads to 

improved performance, as well as improved accuracy. Due to their low discriminat-

ing power, all words occurring in more than 50% of the documents are removed. 

Primarily, these are often used words in general texts such as ‘the’ or ‘and’, as well 

as terms frequently used within a domain (as expressed by the document base), e.g., 

‘experiment’, ‘molecule’, or ‘cell’ in biology. Stemming further reduces the vocab-

ulary size by unifying all flections of terms. A variety of stemmers for different ap-

plications is readily available. 

2. Creating word embeddings for entity contextualization. Currently, word embeddings 

[12] are the state-of-the-art neural language model technique to map terms into a 

multi-dimensional space (usually about 200-400 dimensions are created), such that 

terms sharing the same context are grouped more closely. According to the distribu-

tional hypothesis, terms which often share the same context in larger samples of 

language data, in general also share similar semantics (i.e., have a similar meaning). 
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In this sense, word embeddings group entities sharing the same context and thus 

collecting the nearest embeddings of some search entity leads to a group of entities 

sharing similar semantics. 

3. Filtering according to entity types. The computed word embeddings comprise at this 

point a significant portion of the corpus vocabulary. For each vocabulary term there 

is precisely one-word vector representation as the output of the previous step. Each 

vector representation starts with the term followed by individual values for each di-

mension. In contrast, classical facets only display information of the same type, such 

as publication venues, (co-)authors, or related entities like genes or enzymes. Thus, 

for the actual building of facets, we need only vector representations of the same 

entity type. Here, dictionaries are needed to sort through the vocabulary for each 

type of entity separately. The dictionaries either can be directly gained from domain 

ontologies, like, e.g., MeSH for illnesses, can be identified by named entity recog-

nizers, like e.g., the Open Source Chemistry Analysis Routines (OSCAR, see [26]) 

for chemical entities, or can be extracted from open collections in the domain, like 

the DrugBank for drugs. 

4. Clustering entity vector representations. The last step is preparing the actual group-

ing of entities closely related to each other. To do this, we apply a k-means clustering 

technique on all embedded drug representations and decide for optimal cluster sizes: 

in our approach optimal cluster sizes are decided according to the Anatomical Ther-

apeutic Chemical (ATC) Classification System2. Here ATC subdivides drugs accord-

ing to their anatomical properties, therapeutic uses, and chemical features. 

 

Experimental ground-truth dataset setup.  

Evaluation corpus. With more than 27 million document citations, PubMed3 is the 

largest and most comprehensive digital library in the bio-medical field. However, since 

many documents citations do not feature full texts, we relied solely on abstracts for 

learning purposes. As an intuition, the number of abstracts matching each pharmaceu-

tical entity under consideration should be ‘high enough’ because with more training 

data, more accurate contexts can be learned, yet the computational complexity grows. 

Thus, we decided to use the 1000 most relevant abstracts for each entity according to 

the relevance weighting of PubMed’s search engine [31].  

Query Entities. As query entities for the evaluation, we randomly selected 275 drugs4  

from the DrugBank5 collection. We ensured that each selected drug featured at least 

one class label in ATC and occurred in at least 1000 abstracts on PubMed. Thus, our 

final document set for evaluation contained 275,000 abstracts. Therefore, these drugs 

usually have a one-word name, which makes it straightforward to filter them out after 

a Word2Vec training iteration. However, besides our specific case, pharmaceutical en-

tities often consist of several words (e.g., diabetes mellitus) and can also have many 

                                                           
2 https://www.whocc.no/atc_ddd_index/ 
3 https://www.ncbi.nlm.nih.gov/pubmed/  
4 The complete list can be downloaded under: http://www.ifis.cs.tu-bs.de/webfm_send/2295 
5 https://www.drugbank.ca/ 
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synonyms (e.g., aspirin/ acetylsalicylic acid). Phrases and synonyms are a general prob-

lem for word embedding algorithms because they are usually trained on single words, 

resulting in one vector per word and not per entity. A possible solution for such cases 

is 1) applying named entity recognition in documents and 2) placing a unique identifier 

at the entity's position in the text. Here, entity recognition can be done using PubTator6, 

which is a tool that can recognize pharmaceutical entities as well as their position in 

text and that returns a unique MeSH-Id for each of them.  

As ground truth, all class labels were crawled from DrugBank. Since the ATC clas-

sification system shows a fine-grained hierarchical structure, we remove all finer levels 

before assigning the respective class label to each drug. For example, one of the ATC 

classes for the drug ‘Acyclovir’ is ‘D06BB53’. The first letter indicates the main 

anatomical group, where ‘D’ stands for ‘dermatological’. The next level consists of two 

digits ‘06’ expressing the therapeutic subgroup ‘antibiotics and chemotherapeutics for 

dermatological use’. Each further level classifies the object even more precisely, until 

the finest level usually uniquely identifies a drug. In our active ingredient collection 

there are 13 different ATC class labels of the highest level. We use these 13 different 

labels to divide the 275 active ingredients into 13 (ground truth) clusters. 

 

Ground Truth dataset implementation and parameter settings.  

1. Text Preprocessing: Stemming and stop-word removal were performed using a Lu-

cene7 index. For stemming we used Lucene's Porter Stemmer implementation. 

2. Word Embeddings: After preprocessing, word embeddings were created with 

Gensims’s Word2Vec8 implementation. To train the neural network, we used a min-

imum word frequency of 5 occurrences. We set the word window size to 20 and the 

initial layer size to 275 features per word. Training iterations were set to 4.  

3. Entity filtering. While Word2Vec generated a comprehensive list of word vector 

representations, we subsequently filtered out all vectors not related to any DrugBank 

entity (resulting in 275 entity-vectors).  

4. Clustering vector representations. In this step we clustered the 275 entity vector 

representations obtained in the previous filtering step in 13 clusters. For the cluster-

ing step we used Python [21] Multi-KMean ++ implementation.  

3.1 Experimental Investigation 

First, we need to clarify how a correlation between the different approaches can be 

measured. We also need to determine whether the scaling approaches are faster. In this 

context, the following quality criteria should be fulfilled:  

 Empirical Correlation accuracy: The result of a scaling approach should be compa-

rable to the result of a Word2Vec training for a fixed number of training dimensions. 

Therefore, we will always determine the ‘semantic quality’ of a semantic space by 

                                                           
6 https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/PubTator/ 
7 https://lucene.apache.org/ 
8 https://radimrehurek.com/gensim/models/word2vec.html 
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evaluating purity, F-Score, precision, and recall against the ground truth expressed 

by the ATC classification. After scaling down the original Word2Vec space trained 

on 275 dimensions to n dimensions (where n < 275) the semantic quality of this 

space needs to be compared to the respective quality of a Word2Vec space directly 

trained using only n dimensions. Are the respective qualities correlated for different 

values of n? 

 Mathematical Accuracy: The result of a scaling should resemble the vectors of a 

Word2Vec training. A similarity between the vectors would underpin the results of 

our empirical study as well as help us to find possible differences between PCA and 

MDS. To test our hypothesis, we perform a mathematical analysis based on statisti-

cal t-test and matrix approximation using orthogonal Procrustes.  

 Scaling performance: Performing a scaling iteration for some number of dimensions 

should on average be significantly faster than training a Word2Vec model using the 

same number of dimensions. 

3.2 Empirical correlation accuracy 

In our first experiment we investigate if scaling with MDS and PCA correlates with the 

number of Word2Vec training dimensions regarding the following quality measures: 

F-Score, precision, recall, and purity. We determine the quality measures for our clus-

ters using the method described in Manning et al. [22]. Initially we train Word2Vec 

using 275 dimensions, and we choose the maximum of 275 dimensions because of the 

technical implication for calculating PCA. Technically speaking there exist a Principal 

Component for each variable in the data set. However, if there are fewer samples than 

variables, then the number of samples puts an upper bound on the number of Principal 

Components with eigenvalues greater than zero [27]. Therefore, for this experiment, 

we perform the following steps for each number of dimensions n (where n < 275): 

 Scaling Step: First we scale the initially trained and filtered 275 active substance 

Word2Vec vectors with dimensions n using MDS and PCA. Also, we train 

Word2Vec with n dimensions on the evaluation corpus and then filter out the 275 

active substance vectors. 

 Clustering Step: For each of the three results from the previous step, we assign each 

active ingredient to one of the possible 13 ATC class labels. Then we perform clus-

tering with k=13 and a total of 50 iterations. In each clustering iteration we calculate 

the quality measures mentioned above and calculate the mean values for purity, pre-

cision, recall, and F-Score. 

Figure 1 shows the respective mean values regarding each quality measure for the dif-

ferent choices of dimensions. Table 1 lists the correlation (Pearson correlation coeffi-

cient) values between the different methods. The mean values of the individual dimen-

sions were used for the correlation calculation. As can be seen, there is a strong corre-

lation for all values, whereby the values for MDS correlate best with the Word2Vec 

result. Thus, scaling approaches indeed lead to similar results as Word2Vec training. 
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Table 1. Correlation (Pearson correlation coefficient) values between the different approaches. 

Where PCC is the correlation coefficient between precision values, RCC between recall values, 

F1CC between F1-Values, and PuCC is the correlation coefficient between purity values. 

Correlation between PCC RCC F1CC PuCC 

MDS-W2V 0.90 0.80 0.85 0.87 

PCA-W2V 0.85 0.78 0.81 0.69 

 

Can the optimal training dimension be determined using a scaling method? As can 

be seen, the highest mean values (Figure 1) of the different methods are almost precisely 

in the same dimension range (e.g., precision). This observation allows us to predict the 

optimum number of training dimensions quite accurately using scaling approaches. Is 

the quality comparable? Surprisingly, a Word2Vec training does not always lead to the 

best result. For example, we can observe that scaling for most dimensions (~200) leads 

to a better result. In particular, we achieve the best purity-value with PCA. In short, it 

probably pays off to use a scaling approach. The differences for the other quality 

measures are rather small. For example, MDS can only achieve a ~2% worse precision 

result, but on the other hand, MDS scaling alone can increase the precision values by 

up to ~60%, and F1-Values up to 20%. What we can also see is that our optimum for 

all quality measures lies at about 25 dimensions. This value, in turn, deviates quite far 

from the recommended 200-400 dimensions for a Word2Vec training. Our finding in-

dicates that for a particular problem domain, as in our case, a standard choice of dimen-

sions for a Word2Vec training can be a disadvantage. 

 

 
 

Fig. 1. Precision, recall, F1, and purity mean values for PCA, MDS, and Word2Vec.  

3.3 Mathematical accuracy 

We performed two evaluations to assess the quality of the scaling approaches that we 

compared with Word2Vec. The first evaluation corresponds to what we called metric-
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based analysis because specific metrics that depend on the task at hands such as preci-

sion, recall, and F1 are needed. In contrast, non-metric based evaluation considers only 

the approximation quality of the scaling algorithms regarding the original Word2Vec 

space. 

Metric-based analysis. In this first evaluation we used precision, recall, and F-Score 

to perform a pair-wise t-test comparison. With a 95% confidence interval the differ-

ences between PCA and MDS are not statistically significant for precision and F-Score. 

However, in recall, the differences between PCA and MDS are statistically significant.  

To provide the reader with a visual interpretation of the results found in the recall t-

test, we show in Figures 3, 4, and 5 the Bland-Altman Plots [24] that compares MDS 

with PCA, MDS with Word2Vec, and PCA with Word2Vec, respectively. Bland-Alt-

man plots compare in a simple plot two measurements to ascertain if indeed differences 

exist between them. In the x-axis the graph shows the mean of the measurements and 

on the y-axis their differences. Thus, if there are no differences, we should observe on 

the y-axis that most of the values are near zero. This type of plot makes it easier to see 

if there are magnitude effects, for example when small values of 𝑥 and 𝑦 are more 

similar than large values of 𝑥 and 𝑦. We can observe in that differences between PCA 

and Word2Vec are negligible regarding recall values. Moreover, we can observe that 

the higher the values of recall, the better PCA is in approximating Word2Vec. In sum-

mary, the plot (Fig. 5) shows that PCA leads to a slightly better approximation of recall 

values than MDS.   

Non-metric based analysis. Finally to evaluate the differences between MDS and 

PCA, we decided to assess the approximation power of the two methods using Procrus-

tes analysis. This analysis complements our previous metric-based analysis by intro-

ducing an evaluation of the MDS and PCA spaces regarding how good each of them 

can approximate the original Word2Vec space. What we mean here by Procrustes anal-

ysis is the following: given two identical sized matrices, Procrustes tries to apply trans-

formations (scaling, rotation and reflection) on the second matrix to minimize the sum 

of squares of the pointwise differences between the two matrices (disparity hereafter). 

Put another way, Procrustes tries to find out what transformation of the second matrix 

can better approximate the first matrix. The output of the algorithm is not only the 

transformation of the second matrix that best approximates matrix one but also the dis-

parity between them.  

We use the disparity value in our analysis to determine which of the scaling algo-

rithms can better approximate Word2Vec original space. Low disparity values are bet-

ter by definition.  In Figure 2 we plot the disparity values using dimensions up to 275 

which is the maximum number that we can use because we have only 275 active sub-

stances as our input matrix. To generate the plot, we train Word2Vec for dimensions 

two up to 275. We used the original space of 275 dimensions from Word2Vec to apply 

MDS and PCA using dimension from 2 up to 275. Thus, each point in the plot shows 

the disparity value between the corresponding scaling algorithm and Word2Vec. We 

can see that PCA outperforms MDS because it shows lower disparity values for each 

of the dimensions calculated. In other words, PCA preserves the quality of the seman-

tics of the original Word2Vec space better than MDS.  
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Fig. 2. Disparity Comparison (lower values are better) between Word2Vec-PCA and 

Word2Vec-MDS using Procrustes Analysis.  

 

Fig. 3. Bland-Altman plot using Recall measures PCA vs MDS.   

Recall Bland-Altman Plot Comparison between MDS and PCA

+1.96 SD

-1.96 SD

MEAN
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3.4 Scaling Performance 

After having shown that there is both a strong empirical as well as a robust mathemat-

ical correlation between scaling approaches and a Word2Vec training using the same 

number of dimensions, we then compare the runtime performance of the different ap-

proaches. Here, we first train Word2Vec on our ground truth corpus with 275 dimen-

sions and extract the 275 active substances vectors again. Then we scale the result with 

PCA and MDS to dimensions n (where n < 275), after which we measure the cumulative 

time which was required for scaling to all number of dimensions. Also, we train 

Word2Vec with the different number of dimensions n (n < 275) and measure the cu-

mulative training time for comparison with the scaling approaches. This kind of 

Word2Vec training corresponds to the usual procedure to determine an optimal result 

(e.g., regarding F-Score). All three calculations are performed one after the other on the 

 

Fig. 4. Bland-Altman plot using Recall measures MDS vsWord2Vec.   

 

Fig. 5. Bland-Altman plot using Recall measures PCA vs Word2Vec.   

Recall Bland-Altman Plot Comparison between MDS and Word2Vec

+1.96 SD

-1.96 SD

MEAN

Recall Bland-Altman Plot Comparison between PCA and Word2Vec

+1.96 SD

-1.96 SD

MEAN
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same computer with the following characteristics: 16 Xeon E5/Core i7 Processors with 

377 GB of RAM. The results of our experiments are shown in Table 2: 

Table 2. Runtime (seconds): Sum of the runtimes of the different approaches in seconds. Runtime 

reduction: Reduction in % of run times compared to a Word2Vec (W2V) training  

Approach Runtime (seconds) Runtime reduction 

PCA 17 99.83% 

MDS 1162 88.22% 

W2V 9865    ─ 

 

As can be seen in Table 2, scaling approaches need significantly less time on our active 

substance dataset. Here, a runtime reduction of up to 99% can be achieved. PCA was 

much faster in scaling compared to MDS. Given the observed runtime reduction, it pays 

off to use scaling approaches when training on a large corpus. 

4 Conclusions 

We have conducted an experimental analysis of scaling algorithms applied over a set 

of entities using neural language models for clustering purposes. Indeed, one of the 

most critical parameters of implementations such as Word2Vec is the number of train-

ing dimensions for the neural network. Because different testing numbers are time-con-

suming and thus can take hours or even days per training iteration on large text corpora, 

we have investigated an alternative using scaling approaches. In particular, we used the 

implementation provided by Word2Vec and contrasted Multidimensional Scaling and 

Principal Component Analysis quality. We conclude here by summarizing our main 

findings for researchers and practitioners looking to use Word2Vec in similar problems.  

Our experiments indicate that there exists a strong correlation (up to 90%) regarding 

purity, F1, as well as precision and recall. We have shown that for a particular problem 

domain, as in our active substance case, a standard choice of dimensions for a 

Word2Vec training can be a disadvantage. Moreover, by mathematical analysis we 

have shown that the spaces after scaling strongly resemble the original Word2Vec se-

mantic spaces. Indeed, the quality of the scaling approaches is quite comparable to the 

original Word2Vec space: they achieve almost the same precision, recall, and F1 

measures. 

As a performance bonus, we have shown that performance of scaling approaches 

regarding execution times is several orders of magnitude superior to Word2Vec train-

ing. For instance, we obtained more than 99% of time-saving when computing PCA 

instead of Word2Vec training. Researchers could thus rely on initial Word2Vec training 

or pre-trained (Big Data) models such as those available for the PubMed9 corpus or 

                                                           
9  https://github.com/RaRe-Technologies/gensim-data/issues/28 
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Google News10 with high numbers of dimensions and afterward apply scaling ap-

proaches to quickly find the optimal number of dimensions for any task at hand.  
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